

US Army Corps of Engineers®

SUSTAINABLE SEDIMENT MANAGEMENT AND **DREDGING SEMINAR** 28-30 NOVEMBER 2018 GALVESTON, TX

Chemical/Physical Characterization for In-Water Placement Cheryl R. Montgomery Engineer Research and Development Center 978-318-8644

UNCLASSIFIED

UNCLASSIFIED

DISCOVER | DEVELOP | DELIVER

Introduction

- Decision for placement of dredged materials requires an understanding of its composition and physical properties
- Must demonstrate that placement of dredge materials will not have an unacceptable adverse impact
- Characterization
 - applies to any sample matrix
 - chemical analyses, physical properties, supplemental analyses
 - must be of sufficient quality and quantity to support decision making
 - must be representative of the dredged material

US Army Corps of Engineers • Engineer Research and Development Center

28-30 Nov 2018

UNCLASSIFIED // FOR OFFICIAL LISE ONLY

Galveston, TX

Regulatory Context

- Performance standards for characterization are driven by the regulations governing where the material is to be placed
- Inland waters
 - 40 CFR § 230.61 (chemical, biological and physical evaluation and testing)
 - Inland Disposal Testing Manual (ITM) (1998)
- Ocean waters

- Section 103 of the Marine Protection, Research and Sanctuaries Act (MSPRSA), 40 CFR § 320-330 ad 335-338, 40 CFR 220-228
- Regional Implementation Agreement (RIA) adapts the national procedures to regional situations
- Evaluation of Dredged Material Proposed for Ocean Disposal (Green Book) (1991)

US Army Corps of Engineers • Engineer Research and Development Center

28-30 Nov 2018

LINCLASSIFIED // FOR OFFICIAL LISE ONLY

Galveston, TX

Chemical Characterization

General

- Identify Chemicals of Concern (COCs) that may be present in the dredged material
- Include COCs known/suspected in the vicinity of the dredging site
- Typically, suites of analytes typical of industrial or non-industrialized areas
- Target specific analytes associated with a recent or historical release
- May need to follow specific guidance (e.g. RIA, Table 2)
- Applies to all media \rightarrow water, sediment, elutriate, tissue

US Army Corps of Engineers • Engineer Research and Development Center

28-30 Nov 2018

UNCLASSIFIED // FOD OFFICIAL LISE ONLY

Galveston, TX

Chemical Characterization

- Method Selection
 - EPA SW-846 Compendium of Test Methods <u>https://www.epa.gov/hw-sw846/sw-846-compendium</u>
 - Compile performance standards (e.g. Water Quality Criteria (WQC), Target Detection Limits (TDLs))
 - Compare Reporting Limits (RLs) or Limits of Quantification (LOQs) to performance standards or test requirements
 - Ensure RLs/LOQs < performance standards BEFORE sampling
 - If RLs/LOQs are too high, review COCs for relevance to site
 - When in doubt, consult with the oversight Agency

US Army Corps of Engineers • Engineer Research and Development Center

28-30 Nov 2018

LINCLASSIELED // EOD OFFICIAL LISE ONLY

Galveston, TX

Chemical Characterization

- General Data Package Review
 - sample custody
 - Iaboratory QC within acceptance criteria (check case narrative in laboratory reports)
 - if outside of acceptance criteria evaluate bias
- Review data qualifiers
 - ensure "U" qualified data are not associated with elevated RLs
 - sample cleanup instead of dilution will keep RLs low
- Electronic Data Deliverables (EDDs) Get them!!!
 - specify the fields/info you want
 - sortable Excel or Acces data file
 - PDF of a report is NOT an EDD

US Army Corps of Engineers • Engineer Research and Development Center

28-30 Nov 2018

LINCLASSIELED // EOD OFFICIAL LISE ONLY

Galveston, TX

Data Quality and Data Qualifiers - Example

- Data reporting with only qualifers
- U = "not detected"
- Might conclude that all COCs were not present because they are reported "U"

- Data reported with number & qualifier
- Assume all COCs have a reporting limit of 0.011 ug/L
- Some samples needed to be diluted (*)
- 3 samples OK; 2 need more evaluation

COC	WQC (ug/L)	#1 (ug/L)	#2 (ug/L)	#3 (ug/L)	COC	WQC (ug/L)	#1 (ug/L)	#2 (ug/L)	#3 (ug/L)
COC #1	0.005	U	U	U	COC #1	0.005	0.011 U	0.011 U	0.011 U
COC #2	0.010	U	U	U	COC #2	0.011	0.011 U	0.011 U	0.011 U
COC #3	1.00	U	U	U	COC #3 *	1.00	0.022 U	0.055 U	0.088 U
COC #4	5.00	U	U	U	COC #4	5.00	0.011 U	0.011 U	0.011 U
COC #5	50.0	U	U	U	COC #5 *	50.0	100 U	100 U	250 U

US Army Corps of Engineers • Engineer Research and Development Center

28-30 Nov 2018

LINCLASSIEIED // EOD OFFICIAL LISE ONLY

Galveston, TX

- Provides general information on the physical characteristics of the dredged material
- can assist in assessing the impact of disposal on the benthic environment and the water column at the disposal site
- Primary analyses are:
 - grain size
 - total solids
 - specific gravity
 - total organic carbon

• Grain-size analysis

- distribution of the size ranges of the particles that make up the sediment (gravel, sand, silt, and clay)
- to get CLAY and SILT reported MUST specify grain size by sieve and hydrometer
- used for textural matching
- used qualitatively to infer bioavailability

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED

• Total Solids

- gravimetric determination of the organic/inorganic material remaining in a sample after it has been dried at a specific temperature
- generally used to convert concentrations of the chemical parameters from a wet-weight to a dry-weight basis

• Specific Gravity

- ratio of the mass of a volume of material to an equal volume of distilled water at the same temperature
- usually obtained along with total-solids as it can be used to help to predict the dispersal and settling characteristics of dredged material upon ocean disposal

US Army Corps of Engineers • Engineer Research and Development Center

28-30 Nov 2018

UNCLASSIFIED // FOR OFFICIAL LISE ONLY

Galveston, TX

- Total Organic Carbon (TOC)
 - measure of the total amount of oxidizable organic material in a sample
 - used qualitatively to evaluate chemical binding and/or bioavailability
 - used to evaluate samples for biological testing (e.g. organisms need a minimum level of TOC)

Supplemental Characterization

- Miscellaneous parameters
- Project or medium specific (e.g. percent lipids for tissue testing)

US Army Corps of Engineers • Engineer Research and Development Center

28-30 Nov 2018

UNCLASSIFIED // FOR OFFICIAL LISE ONLY

Galveston, TX

Exclusion Criteria

Inland Waters (40 CFR § 230.60)

- Prior results may make new testing unnecessary
 - 1) Composed primarily of sand, gravel or other naturally occurring inert material
 - 2) Found in areas of high current or wave energy; **BUT**
 - 3) Further inquiry is needed if such material is suspected to be contaminated (e.g. discolored, odor)

Ocean placement 40 CFR § 227.13(b)

- Information collected in Tier 1 on the proposed dredged material is compared to the three exclusionary criteria in paragraph 227.13(b).
 - Composed predominantly of sand, gravel, rock or other material with particles larger than silt AND is found in areas of high current or wave energy; <u>OR</u>
 - 2) Is for beach nourishment or restoration and is composed predominantly of sand, gravel or shell with particles compatible with receiving beaches; <u>OR</u>
 - When: (i) material is substantially the same as the substrate at the placement site <u>AND</u>
 (ii) the material site is removed from known existing or historical sources of contamination

US Army Corps of Engineers • Engineer Research and Development Center

	28-30	Nov	2018
--	-------	-----	------

UNCLASSIFIED

Sediments Meet Exclusion Criteria – Based Upon Grain Size

Exclusion Criteria

- #1: Composed predominantly of sand, gravel, rock or other material with particles larger than silt (EPA > 90%)
- → Corpus Christi: Grain size indicted 95.8% sand and gravel-sized particles
- #2: Found in areas of high current or wave energy (EPA > 0.3 m/s)
- \rightarrow Corpus Christi: 1.79 knots (1.00 m/s)
- Sediments met exclusion criteria
- No further testing

13

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED

Examples of Grain Size

14

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED

Data Quality Objectives and Data Quality Control

- Data Quality Objectives (DQOs)
 - Essential to ensure data meet acceptable criteria for precision and accuracy
 - Data must be representative spatially and chemically
 - Number of samples \rightarrow spatial representative
 - Quality analyses → chemically representative
 - Data must meet performance standards
 - Evaluate data qualifers to ensure RLs are not elevated due to unusual sample handling (e.g. dilutions, matrix effects etc.)
- Data Quality Control
 - Field Quality Control: evaluate the need for and number of field blanks, duplicates, trip blanks (VOCs) etc.

US Army Corps of Engineers • Engineer Research and Development Center

28-30 Nov 2018

LINCLASSIELED // EOD OFFICIAL LISE ONLY

Galveston, TX

Data Quality Objectives and Data Quality Control

- Laboratory Quality Control
 - Method blanks, laboratory control samples, MS/MSDs, surrogates, instrument performance, laboratory standards, QC limits etc.
 - Get a good case narrative (summary) from the laboratory
 - Semi-annual laboratory performance evaluation will document these
 - Laboratory accreditation (NELAC National Environmental Laboratory Accrediation Certification)

US Army Corps of Engineers • Engineer Research and Development Center

28-30 Nov 2018

UNCLASSIFIED // FOD OFFICIAL LISE ONLY

Galveston, TX

Conclusions

- Type and amount of testing is determined by the placement option under evaluation
- Look at the regulatory context and determine performance criteria
- Develop a Sampling and Analysis Plan (SAP)
- Ensure Data Quality Objectives (DQOs) are developed at the outset
- SW-846 methods (RLs/LOQs < criteria or performance standard)
- Include field and laboratory QC
- Use appropriately certified laboratories
- Perform data quality review prior to data evaluation and decision making

US Army Corps of Engineers • Engineer Research and Development Center

28-30 Nov 2018

LINCLASSIFIED // FOR OFFICIAL LISE ONLY

Galveston, TX