## **Benthic Toxicity Evaluation:**

Improving and Streamlining Dredged Material Testing and Evaluation

J. Daniel Farrar

**US Army Engineer Research and Development Center Environmental Laboratory** Vicksburg, MS Daniel.Farrar@usace.army.mil

601-634-2118

ERD











Innovative solutions for a safer, better world





# **Conceptual Model**

#### Benthic Toxicity Evaluation

- One of the pathways considered in open water placement
   Still consider elutriate toxicity
   Still consider bioaccumulation
- Evaluate potential of DM disposal for adverse effects on benthic organisms
- Implications
  - Test failure could require upland placement (e.g., CDF) or other alternative management option



ERDC

# **Benthic Toxicity Evaluation**

### Main Discussion Points

- Assess potential for toxicity of DM following open water disposal
- Concerned with toxicity from direct contact with DM at placement site
  - Will DM placement result in an unacceptable risk at the placement site?
- All benthic toxicity evaluations occur in Tier 3





## **Benthic Toxicity Evaluation**

- Sediment Quality Guideline values are numerical chemical concentrations intended to be protective of biological resources
- Include empirical and mechanistically derived values
- ER-L/ER-M
- TEL/PEL
- AET
- EqP approach for nonionic organics and metals (e.g., AVS-SEM)
- Sediment chemistry is compared to SQG values and the potential for effects is determined



#### Screening Quick Reference Tables for Organics - Sediment

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

| A N A L Y T E<br>All concentrations in parts per billion<br>dry weight unless specified otherwise | CAS<br>Number | FRESHWATER SEDIMENT      |                  |       |                  |          |       |              | D I<br>Sed      | JTCH<br>diment <sup>3</sup> | MARINE SEDIMENT |     |           |      |       |          |       | Eco To    |                                          |
|---------------------------------------------------------------------------------------------------|---------------|--------------------------|------------------|-------|------------------|----------|-------|--------------|-----------------|-----------------------------|-----------------|-----|-----------|------|-------|----------|-------|-----------|------------------------------------------|
|                                                                                                   |               | ARCS<br>Hyalella<br>TEL' | IEL <sup>2</sup> | TEC 2 | LEL <sup>3</sup> | PEL      | PEC   | <u>SEL</u> 3 | UET 4<br>@1%TOC | Target                      | Intervention    | Ia* | TEL       | ERL' | In    | PELT     | ERM 7 | AET       | EqP 1<br>@1%TO                           |
| 2,3,7,8-TCDD dioxin TEQs                                                                          | 1746016       |                          | 0.00085 c        |       |                  | 0.0215 c |       |              | 0.0088†H        |                             | 18              |     | 0.00085 c |      |       | 0.0215 c |       | 0.0036 N  |                                          |
| Acenaphthene                                                                                      | 83329         |                          | 6.71 c           |       |                  | 88.9 c   |       |              | 290 M           |                             |                 | 19  | 6.71      | 16   | 116   | 88.9     | 500   | 130 E     |                                          |
| Acenaphthylene                                                                                    | 208968        |                          | 5.87 c           |       | a                | 128 c    |       |              | 160 M           |                             |                 | 14  | 5.87      | 44   | 140   | 128      | 640   | 71 E      |                                          |
| Acrylonitrile                                                                                     | 107131        |                          |                  |       | [                |          |       |              |                 | 0.07                        | 100 S           |     |           |      |       |          |       |           | 1                                        |
| Aldrin                                                                                            | 309002        |                          |                  |       | 2                |          |       | 80           | 40 I            | 0.06                        | 1,700 LB        |     |           |      |       |          |       | 9.5 AE    |                                          |
| Aldrin + Dieldrin + Endrin                                                                        | na            |                          | 1                |       | 1                |          |       |              | 1               | 5                           | 140 L           |     | 1         |      |       |          |       |           | 1                                        |
| Anthracene                                                                                        | 120127        | 10                       | 46.9 c           | 57.2  | 220              | 245 c    | 845   | 3,700        | 260 M           | 39 LB                       | 1,600 LB        | 34  | 46.9      | 85.3 | 290   | 245      | 1,100 | 280 E     |                                          |
| Atrazine                                                                                          | 1912249       |                          | i                | 1     | i                | 1        |       | 1            | 1               | 0.2                         | 710 LB          |     | 1         |      | i     |          |       |           | i i                                      |
| BCH compounds (sum)                                                                               | na            |                          |                  |       |                  |          |       |              |                 | 10                          | 6,400 L         |     |           |      |       |          |       |           |                                          |
| Benz[a]anthracene                                                                                 | 56553         | 15.72                    | 31.7             | 108   | 320              | 385      | 1,050 | 14,800       | 500 I           | 25 L                        | 2,500 L         | 61  | 74.8      | 261  | 466   | 693      | 1,600 | 960 E     | i                                        |
| Benzene                                                                                           | 71432         |                          |                  |       |                  |          |       |              |                 | 10                          | 1,000           |     |           |      |       |          |       |           | 57                                       |
| Benzo(ghi)perylene                                                                                | 191242        |                          | î 👘              |       | 170              |          |       | 3,200        | 300 M           | 570 LB                      | 33,000 LB       | 67  | i i       |      | 497   |          |       | 670 M     | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |
| Benzo(a)pyrene                                                                                    | 50328         | 32.4                     | 31.9             | 150   | 370              | 782      | 1,450 | 14,400       | 700 I           | 52 L                        | 7,000 L         | 69  | 88.8      | 430  | 520   | 763      | 1,600 | 1,100 E   |                                          |
| Benzo[b]fluoranthene                                                                              | 205992        |                          |                  |       | 1                |          |       |              | i i             |                             | 1               | 130 | 1         |      | 1,107 |          |       | 1,800 E I | i i                                      |
| Benzo[k]fluoranthene                                                                              | 207089        | 27.2                     |                  |       | 240              |          |       | 13,400       | 13,400B         | 380 LB                      | 38,000 LB       | 70  |           |      | 537   |          |       | 1,800 E I |                                          |
| Benzoic acid                                                                                      | 65850         |                          | i i              |       |                  | 1        |       |              |                 |                             |                 |     | î (       |      |       |          |       | 65 O      | i i                                      |
| Benzyl alcohol                                                                                    | 100516        |                          |                  |       |                  | -        |       |              |                 |                             |                 |     |           |      |       |          |       | 52 B      |                                          |
| BHC, alpha (α-HCH)                                                                                | 319846        |                          | i                | i i   | 6                | i        |       | 100          | i i             | 3                           | < 2,000         |     | 1         |      | i     |          | 1.00  |           | i                                        |
| BHC, beta (β-HCH)                                                                                 | 319857        |                          |                  |       | 5                |          |       | 210          |                 | 9                           | < 2,000         |     |           |      |       |          |       |           |                                          |
| BHC, delta (5-HCH)                                                                                | 319868        |                          | i                |       | 1                | i        |       |              | i i             | < 10                        | < 2,000         |     | i i       |      | i     |          |       |           | i                                        |
| BHC, gamma- (y-HCH; Lindane)                                                                      | 58899         |                          | 0.94             | 2.37  | 3                | 1.38     | 4.99  | 10           | 91              | 0.05                        | 1,200 L         |     | 0.32      |      |       | 0.99     |       | >4.8 N    | 3.7                                      |
| Biphenyl                                                                                          | 92524         |                          |                  |       | a constant       |          |       |              |                 |                             |                 | 17  | 1         |      | 73    |          |       | 0.000     | 1,100                                    |
| Bis(2-ethylhexyliphthalate (DEHP)                                                                 | 117817        |                          |                  |       |                  |          |       | -            | 750 tM          | < 100                       | 10.000 LB       |     | 182       |      |       | 2647     |       | 1.300 I   |                                          |
| Bromoform (Tribromomethane)                                                                       | 75252         |                          |                  |       |                  |          |       |              |                 |                             | 75.000          |     |           |      |       |          |       |           | 650                                      |
| Butanol                                                                                           | 35296721      |                          |                  |       |                  |          |       |              |                 |                             | 30,000 S        |     |           |      |       |          | -     |           |                                          |
| Butyl acetate, 1- or 2-                                                                           | na            |                          | 1                |       |                  |          |       |              | 1               |                             | 200,000 S       |     | 1         |      |       |          |       |           |                                          |
| Butyl benzyl phthalate                                                                            | 85687         |                          |                  |       |                  |          |       |              |                 | < 100                       | 48,000 LB       |     |           |      |       |          |       | 63 M      | 1,100                                    |
| Carbaryl                                                                                          | 63252         |                          | 1                |       | 1                |          |       |              |                 | 0.03                        | 450 LB          |     | 1         |      |       |          |       |           |                                          |
| Carbofuran                                                                                        | 1563662       |                          |                  |       |                  |          |       |              |                 | 0.02                        | 17 LB           |     |           |      |       |          |       |           |                                          |
| Carbon tetrachloride                                                                              | 56235         |                          | Ì                |       | Ì                |          |       |              | i               | 170 LB                      | 1,000           |     | Í         |      |       |          |       |           | 1,200                                    |

https://response.restoration.noaa.gov/environmental-restoration/environmental-assessment-tools/squirt-cards.html



## Benthic Toxicity Evaluation (Reference Sediment)

- Reference Sediment provides point of comparison for DM toxicity evaluations
- Reference sediment should reflect conditions at disposal site in absence of disposal activity (as practicable as possible)
- Possess physical characteristics similar to DM (e.g., grain size, organic carbon)
- Not be collected in the vicinity of spills, outfalls, or other significant sources of contaminants (i.e., substantially free of contaminants)
- Be subject to the same hydrologic influences, within the limits of what is practicable, as the disposal site
- Selected reference must be compatible with benthic organisms used in testing (e.g., grain size, TOC, etc.)



## Benthic Toxicity Evaluation (Control Sediment)

- Control Sediment used to assess the acceptability of a toxicity test
- Confirms the biological acceptability of test conditions and organism health
- May be sediment in which the organism was collected or cultured
- Carried through testing procedures in an identical manner as test sediments
- Excessive mortality in control sediment suggests a problem with the test and can invalidate results



## **Benthic Toxicity Testing Summary**

- Conduct whole-sediment toxicity tests
- Compare DM to reference sediment
- Survival of organisms as toxicological endpoint



## Benthic Toxicity Test Design

- Short-term exposure (typically 10 days)
- Measure survival
- Recommend testing with at least two species
- Feeding is test dependent
- Minimum 5 replicates/ treatment
- Test validity based on survival in control sediment





## **Test Species Selection**

- Species representing three life history strategies (burrowing organism, deposit feeder, and filter feeder)
- If only two different species are used, they should together cover the three life history strategies







## **Test Species Selection**

- Other factors to consider:
  - High responsiveness to contaminants
    Low responsiveness to non-contaminant effects (e.g., grain size)
  - Standardized protocol
  - >Ecologically relevant (e.g., infaunal)
  - > Availability (e.g, amenable to culturing)

### Marine/Estuarine Species (Amphipods)



Leptocheirus plumulosus



Eohaustorius estuarius



Ampelisca abdita



Rhepoxynius estuarius

11

ERDC

### Marine/Estuarine Species (Other Invertebrates)

#### Polychaete



#### Neanthes arenaceodentata

#### **Mysid Shrimp**



Americamysis bahia

12

ERDC

### **Freshwater Species**

#### Amphipod



Hyalella azteca

Midge



Chironomus dilutus

US Army Corps of Engineers • Engineer Research and Development Center



13

## Data Evaluation

 Is mortality in dredged sediment 10% greater than reference (20% for marine/estuarine amphipods), and statistically different from reference?

>If No, material is not predicted to be toxic

>If Yes, material is predicted to be toxic

## **Data Evaluation**

- Example Calculation #1:
  - Freshwater amphipod survival in Sediment A equals 75% and <u>IS</u> statistically different from the reference
  - Reference sediment survival equals 86%
  - Material is predicted to be toxic (i.e., mortality greater than 10% different and statistically different from reference)

#### • Example Calculation #2:

- > Marine amphipod survival in sediment B equals 74% and <u>IS</u> statistically different from the reference
- Reference sediment survival equals 87%
- Material is not predicted to be toxic (i.e., statistically different but mortality does not exceed the reference by 20%)

## **Tier 4 Evaluations**

- Case specific studies designed to address uncertainties that must be resolved to reach a decision
  - Implemented when Tier III toxicity tests do not provide adequate information for a risk based decision
  - Includes advanced sediment evaluations (i.e., chronic sublethal toxicity tests, sediment toxicity identification evaluations, etc.)
- Occurrence is rare

# **Confounding or Non-contaminant Factors**

- Toxicity not always due to CoC
  ➤ Sediment grain size (clay, sand, etc,)
  ➤ Salinity
  - ≻Ammonia
  - ➢Nutrition (TOC as an indicator)
  - Low moisture content
  - Should evaluate potential for noncontaminant effects prior to testing when possible (e.g. site historical grain size, TOC, ammonia, etc.)





### Identifying Confounding or Noncontaminant Factors

- Evaluate sediment chemistry (e.g., SQGs, etc.) to ensure a contaminant is not cause of toxicity
- Perform factor specific identification procedures:
  - Ammonia: perform ammonia reduction procedures (e.g, water exchanges, TRE with zeolite, alternate organism, etc.).
  - Nutrition: re-test with minimal feeding or re-test concurrently with alternate approved organism
  - Grain size: re-test concurrently with alternate approved organism with tolerance for grain size range observed
- TRE/TIE as component of side by side re-tests with same or alternate approved organism to demonstrate toxicity is likely not due to a contaminant
- <u>MUST</u> consult oversight agency (e.g., USACE and EPA) if pursuing methods to identify or eliminate the influence of confounding factors



18

ERDC

## Conclusions

- Main Goal: Evaluate potential of DM to cause adverse effects on Benthic organisms
- Process: Evaluate toxicity test data with consideration of confounding factors to determine risk associated with DM disposal
- Procedure: Follow tiered process only as far as necessary to make a risk based decision



19