

11011

US Army Corpsof Engineers®

SUSTAINABLE SEDIMENT MANAGEMENT AND DREDGING SEMINAR 28-30 NOVEMBER 2018 GALVESTON, TX

UNCLASSIFIED

UNCLASSIFIED

Pathway Assessment Susan Bailey

FAIR TERI GATE

DISCOVER | DEVELOP | DELIVER

Buffalo Harbor CDF

Upland placement alternatives

- Confined disposal
- Beneficial use
 - Habitat development
 - Beach nourishment
 - Parks & recreation
 - Agriculture, forestry, horticulture, aquaculture
 - Strip-mine reclamation/Solid waste management
 - Construction/Industrial development
 - Multipurpose

UNCLASSIFIED // FOR OFFICIAL USE ONLY

28-30 Nov 2018

Galveston, TX

Saqinaw

Huron Harbor CDF

Poplar Island

Regulatory concerns and available guidance

- Regulatory
 - CWA Section 404
- Guidance
 - USACE/EPA
 Technical Framework
 - Upland Testing Manual
 - Draft Great Lakes Regional BU Manual

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED // FOR OFFICIAL USE ONLY

Upland pathways

- Effluent
- Runoff
- Volatilization
- Leachate
- Plant/Animal Uptake

Disposal vs. BU

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED // FOR OFFICIAL USE ONLY

28-30 Nov 2018

Galveston, TX

Upland pathways – Unconfined / BU

- Effluent
- Runoff
- Volatilization
- Leachate
- Plant/Animal Uptake

Disposal vs. BU

28-30 Nov 2018

UNCLASSIFIED // FOR OFFICIAL USE ONLY

Galveston, TX

Pathway evaluation

Data/Effort Required

ost

Complexity

- Tier I Existing info
- Tier II Screening
 - calculate concentrations
 - conservative assumptions
 - bulk sediment concentrations
 - equilibrium partitioning
 - spreadsheet available
 - consider initial mixing/dilution
 - compare to appropriate criteria
- Tier III Laboratory testing
 - used to generate pathway concentrations
- Tier IV Case specific

US Army Corps of Engineers • Engineer Research and Development Center

A	8	C	D	E	*	G	14	1	J	- 80
86	legat	Segur.	100.0				CRITERIA			X
67			111111						() () () () () () () () () ()	
88	Artual		_	Effort	Best	Leachate	Volutionalism	Flat	Annual	
89	D.A	Caster	Exci-	Maior	Biatre	Marrie	Infalation.	Applaulie	Applicable	
907	Sectore	Water	control .	Desein	Please.	Deen	References	Second red	Constants.	barber a
91	Conc	Conc.	Conc	Crimia	Civiaria	Develo	Oose	Citieria	Gripta	Weig
92	b.R.		CIII	E-1	C.,	E.	IRD	Ingligi	Instal	MW
03 Contaminants	- Initiality	(10)	(wat)	1 and	1440	Iught	(nahahbu)			term
94 Motala										
90 Auminum				200,0000	200.8000	300-0000	1475-02	NA.	144	
36 Antimony			2022	6.0007	6.000	6 0000	4005-04	37	21	
97 Anomic	0.8800	36,0000	0.0000	50.0000	50.000	50 0000		NA	100	
98 Baium	35,4000		1.00	2000.0000	2000.0000	2000 0000	NA	29	NA) (H
99 Bentium	06200		88	4.0000	4.0000	4 0000	No data	24	110	
IBD Codmun	1 1900	5 3000	0.0000	5.000	5.000	5 0000	500E-04	NA.	21	
IOI Church In	25,2900	53,0000	0.0000	100.0000	100.0000	100.0000	5.82.47	NA.	S - 144	
102 Cideal	5200		1.0	146	NA	NA	NA	NA.	746	6
103 Copper	54,5000	3.0000	0.0000	1300.0000	1300.000	1300 0000	NA	204	54A	
D4 LogJ	50,0000	3,3000	0.0000	0.0000	0.0000	0 0000	104	TUR		
05 Menage	0.1900	0.0250	0.0000	0.2000	8,2000	0.7100	8 K/E-45	NA.	344	
IB6 Notel	14,5800	8.3000	0.0000	NA	144	NA	NA	NA	34	
07 Phosphonus		0.1000	0.0000	0.1000	0.1000	0 1800	NA	NA	144	
IBB Selenium		73.0000	0.0000	5.0000	5.000	5 0000	1.00E-49	189	244	1.14
09 SHM			1000	100.0000	100.0000	100.0000	5,000-80	NA	129	C (1)
10 Thaliam				0.9000	0.9000	0.5800		NA	756	() (1
11 Tn	Sizes		2.83	306	NA	NA		NA	844	
112 Vanadum	37 2900		Sec. au	104	No	NA			< NA	2.03
19 Zm	143 0000	85.0000	0.0000	5000.0000	5000 1000	5000 0000	NA	13 81485	144	
14										
ES EAH's	1000				100		2011			-
4 4 P N Data / HEfkert	4.5000	and the second second	0.0000	the second second second second	A STATEMENT	144	MA	and so it is not a		

28-30 Nov 2018

Galveston, TX

Effluent

US Army Corps of Engineers • Engineer Research and Development Center

28-30 Nov 2018

Galveston, TX

Effluent

- Compare predicted effluent concentration with WQC/WQS
- Consider initial mixing
- Tier II Screening
 - Effluent concentration predicted based on equilibrium partitioning (K_d) and bulk sediment properties
- Tier III Testing
 - Modified Elutriate Test
 - EFQUAL model
 - Column Settling
 - SETTLE model
 - **Toxicity Evaluation (procedure in ITM)**
 - LAT-E model (or EFFLUENT)

28-30 Nov 2018

Effluent – Modified Elutriate Test

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED // FOR OFFICIAL USE ONLY

28-30 Nov 2018

Galveston, **TX**

Effluent – Column Settling Test

Column

- 8-in diameter, > 6-ft tall
- Ports every 6 in.
- Fill column with slurry at expected influent solids concentration
 - Csl = % Fines + (3 x % Coarse)
- 15 day test
 - Sample supernatant TSS
 - Record interface height
- Predict rate of settling and effluent TSS
 - SETTLE model

10

US Army Corps of Engineers • Engineer Research and Development Center

Galveston, TX

Initial Mixing

40 CFR § 230.3 (m) The term *mixing zone* means a limited volume of water serving as a zone of initial dilution in the immediate vicinity of a discharge point where receiving water quality may not meet quality standards or other requirements otherwise applicable to the receiving water.

Model/Technique	Hydrodynamics	Conditions
Dilution Volume	Steady Uniform	General
MacIntyre	Steady Uniform	Riverine
CDFATE (CORMIX)	Steady Uniform	
TABS	Unsteady Nonuniform	Tidally influenced Rivers & Estuaries

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED // FOR OFFICIAL USE ONLY

UNCLASSIFIED // FOR OFFICIAL USE ONLY

Sustainable Sediment Management and Dredging Seminar

Runoff

- **Compare predicted runoff** concentration with WQC/WQS
- **Consider initial mixing**
- **Tier II Screening**
 - **Effluent concentration predicted** based on equilibrium partitioning $(K_{d, ox} \text{ and } K_{d, unox})$ and bulk sediment properties
- **Tier III Testing**
 - Simplified Laboratory Runoff **Procedure (SLRP)**
 - Wet (unoxidized) and Dry (oxidized)
 - **Rainfall Simulator/Lysimeter System** (RSLS)
 - RUNQUAL model
 - **Toxicity Evaluation (procedure in ITM)**
 - ► LAT-R model (or RUNOFF)

28-30 Nov 2018

Sustainable Sediment Management and Dredging Seminar

Runoff – SLRP Procedures

Runoff – SLRP predicted copper

US Army Corps of Engineers • Engineer Research and Development Center

28-30 Nov 2018

UNCLASSIFIED // FOR OFFICIAL USE ONLY

This is why we do both wet, and dry SLRP tests

Galveston, TX

Runoff – RSLS Procedure

- Specialized equipment
- 60 gal sediment
- Conduct on wet; allow to dry 6 months, repeat on oxidized sediment
- Test specifics
 - Rainfall
 - 2 in/hr, 30 min events, 3 events
 - Sample
 - Runoff rate every minute
 - pH, TSS, EC
 - Every minute up to 15 min, then every 5
 - Chemical analysis
 - Composite of 5, 15, 25 minutes after runoff begins
 - Dissolved and total

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED // FOR OFFICIAL USE ONLY

Leachate

Receptors:

GW supply(freshwater)Benthic zonereceptors (marine)

Criteria:

GW or surface water standards

17

US Army Corps of Engineers • Engineer Research and Development Center

28-30 Nov 2018

UNCLASSIFIED // FOR OFFICIAL USE ONLY

Galveston, TX

Leachate

- **Tier II Screening**
 - **Equilibrium partitioning**
 - Laboratory determination of sediment chemical properties
 - Attenuation
 - **Compare to applicable GW or surface** water standards
- **Tier III Testing**
 - **Freshwater sediments**
 - Sequential Batch Leach Test (SBLT)
 - Marine (saline) sediments
 - Pancake Column Leach Test (PCLT)
 - **Groundwater modeling**
 - HELPQ
 - MultiMed/IWEM
 - GMS

28-30 Nov 2018

UNCLASSIFIED // FOR OFFICIAL USE ONLY

Galveston, TX

Leachate - Sequential Batch Leach Test (SBLT)

- Load sediment in a 4:1 water-tosediment ratio under anaerobic (nitrogen atmosphere) conditions (for unoxidized dredged materials).
- Shake for 24 hours, centrifuge, and filter leachate.
- Add water to sediment to make up that removed. Repeat steps 1 and 2.

• Repeat procedure for at least four cycles.

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED // FOR OFFICIAL USE ONLY

28-30 Nov 2018

Galveston, TX

Sustainable Sediment Management and Dredging Seminar

Leachate - Pancake Column Leach Test (PCLT)

• Laboratory-scale physical model of contaminant elution from dredged material

- Thin layer column to maximize the number of pore volumes eluted
- Testing conducted in up-flow mode
- Pore water velocity limited to 1 x 10⁻⁵ cm/sec
- Elution of 30 pore volumes recommended

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED // FOR OFFICIAL USE ONLY

Volatilization

• Not regulated under Clean Air Act. Evaluation designed to meet exposure standards under OSHA.

Receptors:

Humans working on site or adjacent

21

US Army Corps of Engineers • Engineer Research and Development Center

28-30 Nov 2018

UNCLASSIFIED // FOR OFFICIAL USE ONLY

Galveston, TX

UNCLASSIFIED // FOR OFFICIAL USE ONLY

Volatilization

- Tier II Screening
 - Equilibrium partitioning based on Henry's Law, bulk sediment properties
- Tier III Testing
 - Laboratory and field procedures to quantify volatile losses
- **Dispersion**
 - Predictive models
 - Gaussian models
 - More sophisticated, e.g. AERMOD https://www.epa.gov/scram/air-quality-dispersion-modeling

28-30 Nov 2018

Galveston, TX

Volatilization – Tier III – Volatile Flux Chamber Test

- Load dredged material into flux chamber
- Attach COC-specific air sampling tube (traps)
 - Arrange in series for multiple COCs
- Apply air 1.7 L/min
 - "House" air, compressed gas, or vacuum pump
 - Flow meter at entrance, traps to remove contaminants
- Sample air passed over DM surface
 - Sampling intervals depends on concentration
 - E.g. 6, 24, 48, 72 hours, 5, 7, 10, and 14 days
- Flux determination: $N_A(t) = \Delta m / \Delta t / A_c$

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED // FOR OFFICIAL USE ONLY

Galveston, TX

Summary

- Upland placement
 - Disposal in CDFs
 - Beneficial use alternatives
- Tiered screening process
- Pathways
 - Effluent
 - Runoff
 - Leachate
 - Volatilization
 - Plant & Animal uptake

	Tier	Effluent	Runoff	Leachate	Volatilization	Plant Uptake	Animal Uptake	
)Fs	Tier I	Exisiting Info	Exisiting Info	Exisiting Info	Exisiting Info	Exisiting Info, conceptual site model, complete exposure routes	Exisiting Info, conceptual site model, complete exposure routes	
rocess	Tier II	Total release screen and/or Solubility partitioning screen	Solubility partitioning screen	Solubility partitioning screen	Volatility partitioning screen	DTPA Extract, COC elimination	TBP Calculation, COC elimination	
I	Tier III	LTCST turbidity/TS S EET chemistry EET toxicity	SLRP and/or RSLS chemistry SLRP and/or RSLS toxicity	SBLT chemistry and/or PCLT chemistry	VFC chemistry	Plant bioaccumulati on test	Animal bioaccumulatio n test	
	Tier IV	Case specific study or risk assessment						

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED // FOR OFFICIAL USE ONLY

28-30 Nov 2018

Galveston, TX