SUSTAINABLE SEDIMENT MANAGEMENT AND DREDGING SEMINAR
28-30 NOVEMBER 2018
GALVESTON, TX

Engineering and Operational Controls
Paul R. Schroeder
Overview

• Approach and Concepts
• Aquatic Placement Controls
• Upland/Nearshore Placement Controls
Risk

If it is determined that unacceptable risk(s) exist, Engineering and/or operational controls must be evaluated for effectiveness for the site and sediment conditions.
Concepts

Risk is managed by controlling the exposure -- concentration and duration.

Exposure can be reduced by reducing the source concentration, the total mass released, or the rate of release and by altering the release locations.
Engineering Control

Definition: Requires a physical technology or modification of the placement site or design to cause the desired change in conditions.

Source: Geotechnical Supply Inc
Operational Control

Definition: Action that can be undertaken by dredge operator to reduce unacceptable risks of the dredging operations using existing equipment.
Control Applications

Changes in dredging equipment and/or operations can modify:

the total mass released, the rate of release and the release locations

But changes in dredging equipment and/or operations involves tradeoffs:

- dredge production rates,
- project duration,
- costs,
- etc.
Engineering Controls -- Size Matters

- As size increases:
 - Production rate increases,
 - Concentration of resuspended sediment increases, and
 - Availability dilution decreases.
Aquatic Placement Controls
Aquatic Control Measures

- **Water Column Management**
 - Submerged discharge
 - Silt curtains
 - Geocontainers
 - Treatment (polymer addition, sequestration)
 - Reduce discharge rate
 - Promote mixing (discharge while under tow)

- **Benthic Management**
 - Treatment
 - Lateral confinement or CAD
 - Capping with cleaner dredged material or armor
 - Geocontainers
Engineering Modifications

- Select different equipment type
- Select different equipment size
- Control placement operation
 - Location
 - Rate
 - Method
STFATE Evaluation of Alternatives

3000 CY Barge – Single Dump

Peak Lead Concentrations

Violation of WQS outside the mixing zone

WQS = 0.032 mg/L
STFATE Evaluation of Alternatives
1500 CY Barge – Single Dump
Peak Lead Concentrations

No violation of WQS outside the mixing zone

WQS = 0.032 mg/L
STFATE Evaluation of Alternatives
3000 CY Barge – Spreading Discharge

Peak Lead Concentrations

No violation of WQS outside the mixing zone

WQS = 0.032 mg/L
Submerged Discharge

- Can reduce water column dispersion
- Can improve accuracy of placement
- Pipeline configurations
- Diffuser design available
- Tremie technology
Silt Curtains

- **Purpose**
 - To control SS/turbidity in the water column (mainly at dredging site)

- **Advantages**
 - Can be used to protect sensitive environments
 - Can allow particles to settle out of the upper water column
 - Commercially available

- **Limitations**
 - Strong currents (> 1 knot/1.5 fps)
 - High winds
 - Debris/ice
 - Excessive wave heights
 - Fluctuating water levels
 - Must allow traffic in/out (such as bubble curtains)

Silt Curtains
Geo-containers

- Geotextiles used for solids containment
- Reduce water column entrainment
- Reduce water release rate
- Reduce water column dispersion
- Reduce capping requirements
- Engineering design approaches available
GEOTUBE DISPOSAL PHASES
CAD/Capping/Treatment

Purpose - Manage contaminant risks by:

- Physical isolation of contaminants
- Reduction of contaminant flux
- Physical stabilization
 - Limiting losses during placement
 - Reducing mobilization and erosion
- Reduction of bioavailability/bioaccumulation
CAD Approaches

- Existing Pits/Fills or Excavated Pits – (most stable)
- Lateral Confinement
- Mounds
- In Situ Capping

![Level Bottom Capping (LBC)](image1)

![Confined Aquatic Disposal](image2)
Capping/Treatment Considerations

- Placement and design of constructed cells
- Placement techniques for unsuitable material
 - Controlled, accurate
- Placement techniques for cap/treatment material
 - Even coverage or incorporation of adsorbents or reactants
 - Avoid displacing unsuitable material
- Cap/Treatment design – account for:
 - Bioturbation
 - Bioaccumulation
 - Recolonization
 - Consolidation
 - Contaminant transport
 - Erosion
Upland/Nearshore Placement Controls
Contaminant Pathways - Upland CDF

- Plant / Animal Uptake
- Volatilization
- Precipitation
- Surface Runoff
- Unsaturated
- Saturated
- Seepage
- Infiltration
- Leachate
- Weir
- Effluent
- Dike
- Contaminant Pathways - Upland CDF
Contaminant Pathways - Nearshore CDF
Upland/Nearshore Pathways Controls

- **Operational (During filling)**
 - Surface water management, production rates, sequencing placement, self-sealing

- **Treatment of Discharges**
 - Filtration, flocculation, treatment of dissolved constituents

- **Engineered Controls (Containment)**
 - Surface covers, liners, lateral containment

- **Site Management (After Filling)**
 - Surface water management, vegetation, dewatering, surface treatments
Effluent and Runoff Controls

- **TSS & Particulate Associated Contaminants**
 - Design & Operational modifications – increase retention time
 - Increase ponding
 - Reduce short-circuiting – baffles, spur dikes, inlets
 - Improve weir operation, locations and design
 - Limit fetch to reduce wind induced resuspension
 - **Filtration** – cells, permeable dikes and barriers
 - **Chemical flocculants**
 - **Engineered controls** – vegetation, capping
Filter Cell
Flocculant Addition
Runoff SS Controls

![Graph showing suspended solids (mg/l) over time (minutes) for different conditions: Veg, Detritus, Bare.](image-url)
Michigan City, MI
Effluent and Runoff Controls

- **Dissolved Contaminants**
 - **Treatment**
 - Carbon adsorption
 - Ion exchange
 - Chemical or UV oxidation
 - Biological – wetlands
 - **Dispersion**
 - Reduced discharge rate and controlled release
 - Dispersed discharge and extension into flow field
Calumet Harbor, Chicago, Illinois
Leachate Controls

- **Liners and Drains**
 - Geomembranes
 - Clay for coarse-grained materials
 - Collection and dispersion

- **Amendments**
 - Stabilizing agents
 - Adsorbing or precipitating agents such as activated carbon to control organics or apatite to control certain metals
Cut Off Walls
Waukegan Harbor, Illinois
Parrot Beak,
Rotterdam, The Netherlands
Volatilization Controls

- **Activated Carbon Applications**
 - CDF pond
 - Slurry
 - Provides control during active placement

- **Capping** (long-term control)
 - Prevent exposed condition by maintaining pond
 - Cover dredged material with clean material
 - Provides post-placement control
Contaminant Uptake Management & Controls

- Manage vegetative cover
- Amendments/treatments to reduce bioavailability
- Cap to reduce exposure
- Others more site specific depending on target species
Questions?