HOUSTON SHIP CHANNEL EXPANSION CHANNEL IMPROVEMENT PROJECT

CONFINED AQUATIC DISPOSAL (CAD) CELLS

Christopher Frabotta
Chief, Navigation Branch
U.S. Army Corps of Engineers
October 25, 2018

“The views, opinions and findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation.”
HOUSTON SHIP CHANNEL
PROJECT OVERVIEW
HOUSTON SHIP CHANNEL
PROJECT OVERVIEW

- 4.0 – 6.5 MCY / year
- 3 Pipeline Contracts / year
- 1 Hopper contract / 18 mo.
HOUSTON SHIP CHANNEL
PROJECT OVERVIEW

- 4.0 – 6.5 MCY / year
- 3 Pipeline Contracts / year
- 1 Hopper contract / 18 mo.
PIPELINE DREDGING
HOUSTON SHIP CHANNEL
PROJECT OVERVIEW

- 4.0 – 6.5 MCY / year
- 3 Pipeline Contracts / year
- 1 Hopper contract / 18 mo.
HOUSTON SHIP CHANNEL
PROJECT OVERVIEW

- 4.0 – 6.5 MCY / year
- 3 Pipeline Contracts / year
- 1 Hopper contract / 18 mo.
- 1st Mechanical Contract 2018
MECHANICAL DREDGING
HOUSTON SHIP CHANNEL
PROJECT OVERVIEW

HOUSTON-GALVESTON-TEXAS CITY
NAVIGATION COMPLEX

HOUSTON SHIP
CHANNEL-46ft.

BAYPORT-46.5ft.

BARBOURS-46.5ft.

1-610 Bridge
Beltway-8 Bridge

TEXAS
CITY-46ft.

GIWW-13ft.

GIWW-13ft.

GALVESTON
ENTRANCE
CHANNEL

GALVESTON HARBOR-46ft.

Clear Lake
San Jacinto River
Trinity Bay

U.S. Army Corps of Engineers
Galveston District
HOUSTON SHIP CHANNEL
PROJECT OVERVIEW

HOUSTON-GALVESTON-Texas City Navigation Complex

I-610 Bridge
Beltway-8 Bridge
BARBOURS 46.5ft.
BAYPORT 46.5ft.

HOUSTON SHIP CHANNEL 46ft.

U.S. Army Corps of Engineers
Galveston District

Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, CVSpix, i-cubem, Getmapping, Aerogrid, Bliss

U.S. Army
ULTIMATE CAPACITY OF EXISTING CDFs: ~180 MCY

Before Expansion (Current Needs)

- O&M Requirements: ~6.5 MCY / year
 ~27 years of capacity

After Expansion

- O&M Requirements: ~7.5 MCY / years
 ~24* years of capacity

* This assumes that CDF capacity is preserved for Maintenance
CURRENT OPERATIONS

COST
- 3 Pipeline Maintenance contracts / year
- Medium-sized Pipeline Dredges
- 3 – 5 miles of pipeline
- No Booster Pumps
- (~$10 / CY)

OPERATIONAL FEASIBILITY
- Ship traffic able to flow with minimal disruptions during dredging operations

FUTURE OPERATIONS w/out CDF Capacity

COST
- 3 Pipeline Maintenance contracts / year
- Large-sized Pipeline Dredges
- 10+ miles of pipeline
- 1-4 Booster Pumps
- (~$30 / CY)

OPERATIONAL FEASIBILITY
- Ship traffic will be significantly inhibited from excess pipeline and dredging equipment
Houston Ship Channel Feasibility Study
- Reducing transportation costs while providing safe, reliable navigation on the Houston Ship Channel

Identify disposal alternatives for:

- 50+ MCY of new work material from Federal Channel and non-Federal Berthing Areas.

- 350 MCY of maintenance material from Federal Channel and non-Federal Berthing Areas.
Long Distance Conveyance of Dredged Material

- Pipeline Dredging:
 - Large Dredges
 - Long Pipelines
 - Limited to 10 miles +-
 - Not operationally feasible

- Hopper Dredging
 - Cannot dredge berthing areas
 - Not dredging when it’s sailing
 - Not operationally nor economically feasible
 - North of Morgans Point
 - Unable to maneuver in tight areas
MECHANICAL DREDGING
MECHANICAL DREDGING
Long Distance Conveyance of Dredged Material (cont…)

- Mechanical Dredging:
 - Great for berthing area dredging
 - Works well in tight areas
 - Preferred dredging method for new work
 - Able to continuously dredge with multiple scows
 - Scows draw ~15 ft of water
HOUSTON SHIP CHANNEL
PROJECT OVERVIEW

Bayou Reach to ODMDS
57 miles or 114 mi round trip
HOUSTON SHIP CHANNEL
PROJECT OVERVIEW

- Bayou Reach to ODMDS
 57 miles or 114 mi round trip

- Bayou Reach to Mid-Bay
 25 miles or 50 mi round trip
CONFINED AQUATIC DISPOSAL (CAD) CELLS WITH ASSOCIATED ENVIRONMENTAL FEATURES
SUMMARY

- CAD Cells proposed for:
 - New Work (Federal Channel & non-Federal Berths)
 - Future Maintenance (Federal Channel & non-Federal Berths)
- All Environmental (Mitigation) features constructed upfront
- Keeps material in the system
- Available for multiple simultaneous dredging operations
- Environmental features built with pristine new work material
- Mechanical dredging best method for compromised material
- CAD Cell disposal best disposal method for compromised material
- Once constructed; quick and easy approvals for non-Federal material
ON FACEBOOK
www.facebook.com/GalvestonDistrict

ON TWITTER
www.twitter.com/USACEgalveston

ON YOUTUBE
www.YouTube.com/Galveston District

ON DVIDS
www.dvidshub.net/units/USACE-GD

ONLINE
www.swg.usace.army.mil