STFATE
(SHORT-TERM FATE OF DREDGED MATERIAL DISPOSAL IN OPEN WATER MODELS)

OPEN WATER DISPOSAL MODELS FOR PLUME DISPERSION AND INITIAL DEPOSITION FROM DUMP SCOWS AND HOPPER DREDGES
(DISCRETE, NON-CONTINUOUS DISCHARGES)

Dr. Paul R. Schroeder
Environmental Laboratory
(601) 634-3709

Dr. Donald F. Hayes
Environmental Laboratory
(601) 634-7269
MODELS FOR DREDGED MATERIAL DISPOSAL IN OPEN WATER

- DIFID – DISPOSAL FROM AN INSTANTANEOUS DISCHARGE
- DIFCD – DISPOSAL FROM A CONTINUOUS DISCHARGE
- ORIGINAL MODELS DEVELOPED BY EPA (KOH AND CHANG 1973)
- MODIFIED AND REFINED BY WES (BRANDSMA AND DIVOKY 1976 AND JOHNSON 1990)
- VERIFIED BY DATA AT SEVERAL SITES (BOKUMIEWICZ 1978 AND JOHNSON 1978)
PURPOSE

- Simulation of dredged material descent, collapse, and transport by advection and dispersion
- Prediction of water quality in water column considering the effects of initial mixing
- Comparison of contaminant concentration in water column with water quality standard at edge of disposal site
- Prediction of mixing zone required for open water disposal of dredged material
- Prediction of initial deposition of dredged material
DISPOSAL SEQUENCE
PHASES MODELED

- Convective descent – controlled by gravity and momentum
- Dynamic collapse – bottom encounter, spreading dominates
- Passive transport dispersion – currents and turbulence dominate
EXAMPLE PLUME GENERATION AND TRANSPORT
APPLICATIONS

- Regulatory evaluation under Section 103 of the Marine Protection Research and Sanctuary Act and Section 404(b)(1) of the Clean Water Act
- Evaluation of sediment mound development
- Plume generation and transport evaluations
REGULATORY EVALUATION USES TIERED APPROACH

TIER II
NEED FOR TESTING

TIER II
WATER QUALITY

TIER III
TOXICITY
INPUT REQUIREMENTS

- DISPOSAL SITE DESCRIPTION
- VELOCITIES AT DISPOSAL SITE
- INPUT/OUTPUT/EXECUTION CONTROLS
- DREDGED MATERIAL DESCRIPTION
- DISPOSAL OPERATION
- MODEL COEFFICIENTS
DISPOSAL SITE DATA

20x20 GRID
150 FT GRID SPACING IN X AND Z DIRECTION

BOTTOM SLOPE = 0
BOTTOM ROUGHNESS .01 FT

100 FT CONSTANT DEPTH GRID
0-3 ADDITIONAL WATER DENSITIES CAN BE SPECIFIED

WATER DENSITY PROFILE

NEAR SURFACE WATER DENSITY REQUIRED

ASSUMES LINEAR DENSITY VARIATION BETWEEN POINTS

0-3 ADDITIONAL WATER DENSITIES CAN BE SPECIFIED

NEAR BOTTOM WATER DENSITY REQUIRED
DISPOSAL SITE WATER VELOCITY OPTIONS

- SINGLE DEPTH-AVERAGED VELOCITY
 - Uniform velocity profile
 - Logarithmic velocity profile

- 2-POINT VELOCITY PROFILE
 (Constant Depth Grid Only)

- VARIABLE VELOCITY FIELD FOR ENTIRE GRID

- UNSTEADY VELOCITY FOR SINGLE DEPTH
 (Tidal Velocity Profile)
DEPTH AVERAGED VELOCITIES (SINGLE VALUE)

- **Uniform Velocity Profile**
- **Logarithmic Velocity Profile**
2-PT VELOCITY PROFILES

- User Enters X and Z Velocities at 2 Depths
- STFATE Extrapolates Velocity with Depth as:
 - Constant velocity between water surface and shallowest depth
 - Linear variation between shallowest and deepest depth
 - Linear variation between deepest depth and velocity = 0 at bottom
- Velocities Assumed Constant Throughout Simulation
VARIABLE VELOCITY PROFILE

- User enters x and z velocity vectors for each cell
- Allows detailed flow field
- Typically derived from hydrodynamic model output
- Velocity assumed constant throughout simulation
UNSTEADY VELOCITY (SINGLE POINT, TIDAL VELOCITY)

- CONSTANT VELOCITY WITH DEPTH
- MAGNITUDE AND DIRECTION CHANGE OVER A FIXED PERIOD
- TIME PERIOD REPEATS DURING SIMULATION
- TYPICAL OF TIDAL CYCLES
- COULD BE USED FOR OTHER SIMULATIONS
INPUT, EXECUTION, AND OUTPUT CONTROLS

- Phases To Be Modeled
- Level of Evaluation (Tier)
- Disposal Site/Mixing Zone Location
- Contaminant Description, Concentrations, and Criteria
- Depths Where Output Desired
- Duration of Simulation
- Size of Long-Term Time Step for Diffusion
- Selection of Output Types
DREDGED MATERIAL DESCRIPTION

- Number of layers (max 6) and volumes
- X & Z velocity vectors of barge/hopper
- Number of solid fractions (max 4)
 - e.g. Clumps, Sand, Silt, Clay
- Properties of solid fractions
 - Specific Gravity
 - Volumetric Concentration
 - Fall Velocity
 - Void Ratio
 - Critical Shear Stress
 - Cohesiveness
- Dredging site water density
DREDGED MATERIAL DESCRIPTION

![Dredged Material Description Data](image_url)

<table>
<thead>
<tr>
<th>Fraction Number</th>
<th>Description</th>
<th>Entire Load</th>
<th>Layer Fractions Total</th>
<th>Bottom Layer</th>
<th>Layer 2</th>
<th>Layer 3</th>
<th>Layer 4</th>
<th>Layer 5</th>
<th>Top Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Silt</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Clay</td>
<td>0.031</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SAND</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SAND</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td>0.956</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sediment Volume (cy)</th>
<th>13500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture Content, %</td>
<td>0.0</td>
</tr>
<tr>
<td>X Barge Velocity (fps)</td>
<td>0.0</td>
</tr>
<tr>
<td>Z Barge Velocity (fps)</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific Gravity</th>
<th>Fall Velocity (ft/sec)</th>
<th>Deposition Void Ratio</th>
<th>Critical Shear Stress (lb/ft²)</th>
<th>Cohesive?</th>
<th>Stripped During Descent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.65</td>
<td>0.01</td>
<td>4.5</td>
<td>0.0085</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.65</td>
<td>0.002</td>
<td>7.5</td>
<td>0.0038</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>0.1</td>
<td>0.6</td>
<td>0.025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>0.1</td>
<td>0.6</td>
<td>0.025</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BARGE PARAMETERS AND DISPOSAL OPERATIONS DATA

BARGE PARAMETERS:
- LENGTH
- WIDTH
- PREDISPOSAL (LOADED) DRAFT
- POST-DISPOSAL (UNLOADED) DRAFT

DISPOSAL OPERATIONS:
- DREDGED MATERIAL VOLUME
- TIME TO EMPTY
- DISCHARGE CONDITIONS
 - X-VELOCITY VECTOR
 - Z-VELOCITY VECTOR

SITE PARAMETERS:
- SIZE OF ANY DEPRESSIONS
 - LENGTH
 - WIDTH
 - DEPTH
REQUIRED:

- DISPOSAL SITE/MIXING ZONE LOCATION
 - X,Z OF UPPER LEFT CORNER
 - X,Z OF LOWER RIGHT CORNER
- DISPOSAL LOCATION
 - X,Z OF VESSEL CENTER

GRID SCHEMATIC
Model Coefficients with Defaults

Table of Coefficients

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>KEYWORD</th>
<th>DEFAULT VALUE</th>
<th>CURRENT VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting Coefficient</td>
<td>BETA</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Apparent Mass Coefficient</td>
<td>CM</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>Drag Coefficient For a Sphere</td>
<td>CD</td>
<td>0.5000</td>
<td>0.5000</td>
</tr>
<tr>
<td>Form Drag For Collapsing Cloud</td>
<td>CDRAG</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>Skin Friction For Collapsing Cloud</td>
<td>CFRIC</td>
<td>0.0100</td>
<td>0.0100</td>
</tr>
<tr>
<td>Drag For an Ellipsoidal Wedge</td>
<td>CD3</td>
<td>0.1000</td>
<td>0.1000</td>
</tr>
<tr>
<td>Drag For a Plate</td>
<td>CD4</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>Friction Between Cloud and Bottom</td>
<td>FRICTN</td>
<td>0.0100</td>
<td>0.0100</td>
</tr>
<tr>
<td>4/3 Law Horiz. Diff. Dissipation Factor</td>
<td>ALAMDA</td>
<td>0.0010</td>
<td>0.0010</td>
</tr>
<tr>
<td>Unstratified Water Vert. Diff. Coefficient</td>
<td>AKY0</td>
<td>0.0250</td>
<td>0.0250</td>
</tr>
<tr>
<td>Ratio-Cloud/Ambient Density Gradients</td>
<td>GAMA</td>
<td>0.2500</td>
<td>0.2500</td>
</tr>
</tbody>
</table>

- **Calculate Vertical Diffusion Coeff (AKY0) using Pritchard Expression Instead of Using Current Value?**
OUTPUT DATA

- Time History of Descent and Collapse Phase
- Plume Concentrations by Time/Depth
- Accumulation of Material on Bottom
- Maximum Concentrations
WATER COLUMN CONCENTRATIONS

Ammonia Concentration (mg/L)
DEPOSITION DEPTH WITHIN MODEL GRID