Dredged Material Evaluation and Testing Part II – Upland Disposal

Trudy J. Estes, Ph.D., P.E.
US Army Corps of Engineers
Research and Development Center
CEERD-EP-E
3909 Halls Ferry Road
Vicksburg, MS 39180

Email: <u>Trudy.J.Estes@usace.army.mil</u>

(601) 634-212<u>5</u>

Topics

- Upland disposal defined
- Regulatory framework
- Technical evaluations
 - > Purpose
- Disposal facilities
 - Testing and modeling tools
 - Conceptual design
- Environmental evaluation 404 (b)(1)
 - Chemical testing and modeling
 - Tiered approach
 - Pathways

Upland = "Confined" Disposal

When do we use upland disposal?

- Open water infeasible
 - Logistically
 - Contaminant bioaccumulation/toxicity
- Associated benefits
 - Brownfields sites
- If best option
 - > Cost
 - Availability
 - Environmental suitability

Governing Framework

- Regulatory
 - Clean Water Act (CWA)
- Technical
 - USACE/EPA Technical Framework
 - Upland Testing Manual (UTM)
 - Previously incorporated in the Inland Testing Manual (ITM)

\$EPA

Evaluating Environmental

Clean Water Act

- Regulatory Section 404(b)(1)^(a)
 - "...the term 'discharge of dredged material' ... includes... the runoff or overflow from a contained land or water disposal area..." 33 CFR 323.2
- Requires return flow
 - Trigger for RCRA Subtitle C Exclusion(b)
 - BUT states can still choose to regulate DM as solid waste

a) http://water.epa.gov/lawsregs/rulesregs/cwa/upload/CWA_Section404b1_Guidelines_40CFR230_July2010.pdf

b) Palermo and Wilson 2000

USEPA/USACE Technical Framework

- Guidance (not regulatory)
 - http://el.erdc.usace.army.mil/dots/pdfs/epa/tech-framerev04.pdf
- Articulates NEPA, CWA, MPRSA requirements
- Alternatives screening
 - Open water
 - Confined disposal
 - Beneficial use
- Environmental suitability

Upland Testing Manual

- Guidance (not regulatory)
 - http://el.erdc.usace.army.mil/dots/pdfs/trel03-1.pdf
- Concerned with contaminant exposures associated with CDFs
- Develop lines of evidence to support decision making
 - Alternatives analysis
 - Management requirements
 - Need for controls
 - > Evaluation of risk, inform risk management

Evaluation and Testing Objectives

- Physical requirements
 - Solids storage
 - Water management
 - Conceptual design
- Environmental impacts
 - Related to disposal^(a)

a) Re-suspension occurring during dredging is considered "de minimus" 33 CFR 323.2

CDF Conceptual Design

- Design objectives
 - > Retain solids
 - Contain contaminants
 - Material recovery
- Information/data required
 - Sediment characteristics
 - Dredging plan
 - Dredging/offloading method
 - Prospective sites/borrow material
- Supporting tests
 - Column settling tests
 - **Consolidation testing**

Capacity Requirements

Short term

- Storage & clarification area
- Outlet weir length
- Effluent suspended solids
- > SETTLE model
- Data inputs
- Long term
 - Multiple placements
 - Consolidation
 - PSDDF model
 - Data inputs

Design and Management

- Preliminary layout
- Detailed design
 - Construction specifications
 - Foundation treatments
 - Outlet structures
 - Water management plan
 - Site appurtenances
- CDF management plan
 - Maximize capacity
 - Accelerate dewatering
 - Manage vegetation, etc....

Environmental Evaluations – Tiered Approach

Tier I	Existing Info				
			red		
Tier II	Screening Evaluations	lexity	Requir	ost	
Tier III	Effects-Based Testing and Evaluations	Complex	Data/Effort Required	S	
Tier IV	Case Specific Studies/ Risk Assessment				

Conceptual Model - Contaminant Pathways

CDF Pathway End Points

- Effluent and Runoff
 - WQ Standards and/ or WC Toxicity after Mixing^(a)
- Leachate
 - Applicable WQ Standards after Attenuation (groundwater or surface water typically)
- Volatiles
 - OSHA Human Exposure Standards after Dispersion
 - > Health Based Air Concentration for Acceptable Risk
- Plant and Animal Uptake
 - Comparison of uptake to Reference Soil
 - Comparison to EcoSSL's

a) where mixing zones are permitted by the State

Tier I – Existing Information

Establish Site-specific Pathways and Contaminants of Concern

Compile

- Available sediment and water chemistry
- Sediment physical characterization
- Area land uses
- Municipal, industrial, surface water inputs
- Project info (maintenance vs. new work)
- Available data from other agencies diversity studies, tissue sampling
- "Reason to believe"
 - Need for Tier II Pathway Evaluations relevant pathways and contaminants

Tier II – Screening Level Evaluations

Effluent; Runoff; Leachate; Volatiles (Henry's Law)

Animal Uptake

Plant Uptake - PUP

Diethylenetriamine-pentaacetic acid (DTPA) Extract

Tier II Outcomes

Definitive determination

- WQC met with attainable dilutions/attenuation
- Volatilization exposures acceptable
- Plant and animal uptake levels acceptable

Not definitive

- Contaminants present have no WQC
- Predicted dilution requirements high
- > Predicted exposures potentially unacceptable
- Data or model inconsistency

Resolve specific issues with Tier III Testing and Evaluations

Tier III Testing

- Effects Based Testing and Evaluations
 - Physical "modeling" of contaminant exposure and effects
 - Key chemical and biological Tests
 - Effluent elutriate test (formerly modified elutriate)
 - Toxicity/bioaccumulation testing sediment/effluent
- Modeling
 - Dilution requirements
 - Attainable mixing/dilution

Tier III Outcomes

- Definitive determination
 - Toxicity/bioaccumulation not significant
 - No predicted WQC exceedances
 - Effective management controls, mixing/dilution
- Not definitive
 - Contaminants present have no WQC
 - Predicted dilution requirements high
 - > Predicted exposures potentially unacceptable
 - Data or model inconsistency
- Tier III test results provide data for Tier IV Risk Assessments

Tier IV Case Specific Studies

- Formal quantitative risk assessment
- Addresses specific, well-defined questions
- Rarely necessary for navigation dredging
- Unnecessary use of resources when
 - Merely a refinement of Tier III
 - Definitive determination unchanged
- Guidance
 - Cura, Wickwire, and McArlde (in preparation)
 - Other references PIANC 2010

Conceptual Design - Toolkit

Column settling test

- > DYECON
 - Hydraulic efficiency
 - Wier length
- > SETTLE
 - Storage and ponding requirements
 - Effluent SS predictions
- Consolidation tests
 - > PSDDF
 - Long term volume changes
 - Effect of multiple lifts

Column Settling Test

- Fine sediment fraction
 - Default 150 g/l solids
 - Empirical %Fine +3x%Coarse
- Recommended sampling intervals ~1, 2, 4, 6, 12, 24, 48, 96 hr...15 days
 - If zone settling (rapid formation of interface) – supernatant (above the interface)TSS
 - If flocculent settling TSS measured at all ports

Column settling test data

- Zone settling
 - > Basis for clarification requirements
 - Interface settling velocity tangent

Column settling test data

Flocculent settling

Basis for effluent TSS predictions

- TSS measurements

Port height x sampling time

Compression settling

- Calculated solids concentration vs. time
- Basis for storage requirements

SETTLE

Sediment data

- Input column settling test data
 - Compression settling
 - Zone settling
 - Flocculent settling
- Sediment properties (partial list of input options)
 - Grain size (% less than 74 µm)
 - Specific gravity
 - In-situ solids concentration
 - Sand specific gravity
 - Settled sand solids concentration

SETTLE (con't)

- Production and operating assumptions (partial list of input options)
 - Dredge pipe diameter (in)
 - Average pipeline velocity (ft/s)
 - Dredge discharge solids concentration (g/l)
 - Hours/day operation
 - Days/week operation

SETTLE (con't)

Disposal area configuration (representative, iterative assumptions)

- Average dike height (ft)
- Freeboard (ft)
- Minimum ponded depth (ft)
- Depth of withdrawal (ft)
- Average storage area (acres)
- Percent ponded at end of disposal (%%)
- Hydraulic efficiency (%)
- Maximum allowable effluent TSS (mg/l)

SETTLE (con't)

- SETTLE output (partial) compression data
 - Minimum area and storage volume
 - Minimum average depth or dike height
 - Max production/min disposal period
 - Max in-situ volume
- SETTLE output (partial) zone settling data
 - Minimum ponded area
 - Maximum influent flow rate
- SETTLE output (partial) flocculent settling
 - Minimum area, ponded area and volume
 - Mean residence time
 - Minimum pond depth
 - Maximum flow rate

Partitioning Analysis

- Predicted contaminant releases based on
 - Sediment chemical and physical properties
 - Carrier water properties
 - Contaminant properties (K_d, Henrys Law constant, etc.) for oxidized and unoxidized conditions
 - Influent slurry solids (g/l)
 - Receiving water properties and flow
 - Predicted effluent and runoff TSS
 - CDF geometry
 - Climatic conditions
 - Foundation soils
 - And other available parameters....

Partitioning Analysis

- Algorithms for all relevant pathways
 - Criteria comparisons
- Conservative
 - Generally over-predicts contaminant releases
- Predicted exceedances
 - > Inform need for further testing
 - Refine contaminants of concern
 - Inform dredging/disposal plan

Modified/Effluent Elutriate Test

Effluent Toxicity Testing

- Evaluate toxicity of DM elutriate
- Conduct these tests if:
 - Tier I evaluation suggests the DM may contain contaminants that might result in adverse effects
 - Potential for synergistic interactions between chemicals identified in DM elutriate
 - No WQS for contaminants of concern
 - No factual determination has been made

Effluent Toxicity Testing

- Unfiltered supernatant after settling = 100% effluent
- Compare organism survival in dilution water and elutriate dilutions
 - At least 3 concentrations
 - Control survival > 90%
 - 5 replicates
 - 10 organisms/ replicate
 - 48- to 96-hour duration
 - Determine concentration resulting in 50% mortality (LC₅₀)
- Compare mortality in dilution water and 100% elutriate
 - T-test if >10%

If not significant, elutriate meets LPC

Calculating Dilution Requirements

 Dilution =Volume receiving water/Volume effluent required to meet WQC

▶ Volume based^(a):

$$D = rac{\left(C_{e\!f\!f} - C_{WQC}
ight)}{\left(C_{WQC} - C_{rec}
ight)}$$

➤ Toxicity based(b):

$$D = \frac{\left(C_{100\%} - \frac{C_{LC50}}{AF}\right)}{\left(\frac{C_{LC50}}{AF} - C_{0\%}\right)}$$

- a) C effluent contaminant concentration, C contaminant water quality eff criteria, C background contaminant concentration in receiving water rec
- b) AF = application factor converts acute exposure to chronic equivalent, $C_{100\%}$ 100% elutriate, C_{LC50} percent elutriate at 50% mortality, $C_{0\%}$ zero% elutriate

Calculating Dilution Requirements

- Dilution available in mixing zone?
 - Mixing model CDFATE, CORMIX
 - State specific definitions
 - Specified radius or % of receiving water flow

- Replaces rainfall simulator for screening
 - Large sediment volume
 - > Time intensive
 - > \$\$\$
- Laboratory extraction
 - Wet sediment
 - Dry/oxidized sediment
- Worst case exposure

- Dried sediment procedure
 - Organic contaminants
 - > 3 gal sediment
 - Common laboratory equipment
 - Dilute with DDI to desired TSS
 - Agitate for one hour
 - Analyze contaminant concentrations
 - Filtered for soluble
 - Unfiltered for total
 - Compare to WQC

Dried oxidized sediment

- Metal contaminants
- Air dry to less than 5% moisture, grind
- Add H₂O₂ to increase sediment oxidation, dry, regrind
- Conduct extractions, TSS at 50, 500, 5,000 mg l⁻¹

- Wet, unoxidized sediment
 - Applicable to all contaminants
 - Higher TSS
 - Wet sediment more easily eroded
 - Empirical evidence higher TSS runoff concentrations
 - Conduct extractions, TSS at 500, 5000, 50,000 mg l⁻¹

Leachate Modeling

Sequential Batch Leach Test (SBLT)

"Pancake" Column Leach Test (PCLT)

Selection of Test Procedure

- Freshwater Dredged Material
 - Batch testing
 - Generally yields well-behaved contaminant desorption isotherm or single point K_D
- Saline Dredged Material
 - Column Testing
 - Salt elution results in colloid release not well represented by batch test results

Batch Test Procedure

- Load sediment in a 4:1 water-to- sediment ratio under anaerobic (nitrogen atmosphere) conditions
- Shake for 24 hours, centrifuge, and filter leachate
- Add water to sediment to make up that removed. Repeat steps 1 and 2
- Repeat procedure for at least four cycles

Column Test Procedure

- Thin layer column to maximize the number of pore volumes eluted
- Testing conducted in up-flow mode
- Elution of 30 pore volumes recommended
- More \$\$\$ than batch testing

Leachate Modeling

- Estimate leachate attenuation in vadose zone
 - Diffusion
 - Degradation
 - Volatilization
 - Irreversible exchange with solids
- Estimate dilution/mixing/transport in groundwater
- Estimate exposure concentration at point of compliance or at receptor
 - Compare to WQC Groundwater, drinking water, or surface water criteria as appropriate to the site

Volatilization Testing

Volatile Flux Chamber

Volatile Emissions from Dredged Material

Volatilization Processes

- Sediment Physical Characteristics
 - Moisture content, porosity, aging, oil and grease concentration
- Contaminant Chemical Properties
 - Henry's Law Constant, vapor pressure, sediment contaminant concentrations
- Environmental Variables
 - Relative air humidity, temperature
 - Mechanical movement (mixing) of the sediment

Laboratory Experimental Design

Example Lab Sampling Protocol

Sampling times / intervals:

- > 6, 24, 48, 72 hours, 5, 7, 10, and 14 days
 - Sample continuously (replace trap at each sample interval making sample intervals anywhere from 6 to 96 hours each)
 - Sampling length dependent on contaminant concentrations and analytical detection limits

Experimental conditions:

- Initiate experiment with field moist sediment and apply dry air over sediment surface (14-day experiment)
- Apply humid air over sediment surface for 7 days
 Rework sediment and repeat with dry air

Test Protocol (Field)

Field Apparatus

- Top portion identical to that of laboratory chamber
- Bottom portion has central opening for sediment surface, with 2-inch-long side plates to seal the apparatus from the surrounding air
- Carrier Air
 - "Outside" air is pulled through a trap (to assure uncontaminated air) and across sediment surface
- All other materials and sampling procedures identical to those in the laboratory

Flux Calculations

 Contaminant flux is calculated by determining the total mass of material captured in a given time interval using the equation:

$$N_{A}(t) = \underline{\Delta m}_{\Delta t A_{c}}$$

 $\Delta m = mass (ng) of compound collected on the trap in time <math>\Delta t(hr)$

 A_c = area the sediment-air interface, cm²

N_A(t) is expressed in ng/cm²/hr

Gaussian Dispersion Air Quality Model

Data Entry	
Top of Form 1 Enter the Contaminant Emission Rate (Q): 0 milligrams/sec	Enter the Downwind Distance (X) from Origin: Ometers
Enter the Crosswind Distance (Y) from Origin: (Typically, 0) meters	Enter the Vertical Distance (Z) from Origin: (Typically, 0) meters
Enter the Average Wind Velocity: o meters/sec	Enter the Effective Stack Height (H): (Always 0 for Ground Surface) o meters
Enter Atmospheric Stability Rating (A-F): (D is Neutral.) Help	Calculate or Clear Data
Calculated Dispersion Coefficients	
Calculated Sigma y:	Calculated Sigma z:

 Computes Contaminant concentration at a point (X, Y, Z) downwind from a source at an elevation H above the ground.

Air Quality Results

micrograms/cubic meter

Plant Uptake Evaluation

- DTPA extraction/PUP for metal uptake
- Plant bioassay to determine plant toxicity, uptake of inorganic and organic contaminants
- Compare to reference and available criteria
 - > FDA Action Levels for foodstuffs
 - European/WHO recommended limitations in foodstuffs on animal feeds, leafy vegetables
 - USDA demonstrated effects levels plant toxicity

DTPA Extraction Test

- Chemical characterization of sediment
 - Acid-digest metals, pH, organic matter
- DTPA extraction of wet and dry sediment to predict plant extractable metals
- Results are input into the Plant Uptake Program (PUP)
 - Estimates total plant uptake of metals
 - (tissue concentration x plant biomass)
 - Compares predicted results of test sediment to reference sediment

Typical Upland Plant Bioassay

Animal Uptake Evaluation

- Earthworm bioassay
 - Toxicity (7 day)
 - Bioaccumulation (28 day)
 - Salinity <10 ppt</p>
 - Analyze for COCs
 - Compare to reference & controls
- Sediment comparisons
 - Reference soils
 - > FDA- type action levels

Questions?

References

- USEPA/USACE 2004. "Evaluating Environmental Effects of Dredged Material Management Alternatives – A Technical Framework", EPA842-B-92-008 Revised May 2004, U.S. Environmental Protection Agency, Washington, D.C.
- US Army Corps of Engineers 2003. "Evaluation of Dredged Material Proposed for Disposal at Island, Nearshore, or Upland Confined Disposal Facilities — Testing Manual", ERDC/EL TR-03-1, Engineer Research and Development Center, Vicksburg, MS.
- Palermo and Wilson 2000. "Corps Of Engineers Role In Contaminated Sediment Management And Remediation", proceedings of Contaminated Sediments: Science, Law and Politics, the 8th Section Fall Meeting, American Bar Associate, Section of Environment, Energy, and Resources, New Orleans, Louisiana, September 20-24, 2000, U.S. Army Engineer Research and Development Center, Waterways Experiment Station, Vicksburg, MS

References

- PIANC 2010. "Environmental Risk Assessment of Dredging and Disposal Operations", Envicom Working Group 10, Brussels, Belgium.
- Stark, T. D. (1996). "Program Documentation and User's Guide: PSDDF -- Primary Consolidation, Secondary Compression, and Desiccation of Dredged Fill," Instruction Report EL-96-XX, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Stark, T. D., Choi, H. and Schroeder, P. R. (March 2005a). "Settlement of Dredged and Contaminated Material Placement Areas. I: Theory and Use of Primary Consolidation, Secondary Compression, and Desiccation of Dredged Fill," Vol. 131, No. 2, ASCE Journal of Waterway, Port, Coastal, and Ocean Engineering, pp. 43-51.

References

- Stark, T. D., Choi, H. and Schroeder, P. R. (March 2005b).
 "Settlement of Dredged and Contaminated Material Placement Areas. II: Primary Consolidation, Secondary Compression, and Desiccation of Dredged Fill Input Parameters," Vol. 131, No. 2, ASCE Journal of Waterway, Port, Coastal, and Ocean Engineering, pp. 52-61.
- Engineer Manual 1110-2-5027 Confined Disposal of Dredged Material
 - http://www.usace.army.mil/inet/usace-docs/eng-manuals/em1110-2-5027/toc.htm

Models and Documentation Links

- Dredged material disposal management models site on EL website
- http://el.erdc.usace.army.mil/products.cfm?Topic=model&Type=drgmat
- Model documentation links
- SETTLE CDF storage/ponding requirements/TSS predicito
- http://el.erdc.usace.army.mil/elmodels/pdf/ee-06-18.pdf
- DYECON CDF hydraulic efficiency
- http://el.erdc.usace.army.mil/elmodels/pdf/ee-06-17.pdf
- CDFATE Mixing zone computations
- http://el.erdc.usace.army.mil/elmodels/pdf/cdfate.pdf
- CORMIX Mixing evaluations
- http://www.cormix.info/
- PSDDF Consolidation of dredged material
- See reference list for model documentation
- PUP Plant uptake
- http://el.erdc.usace.army.mil/elmodels/pdf/ee-04-12.pdf

Models and Documentation Links

- Model documentation links
- HELPQ leachate evaluations
- http://el.erdc.usace.army.mil/elmodels/pdf/help3use.pdf
- AERMOD (AMS/EPA Regulatory Model (AERMOD) air emissions modeling
- http://www.epa.gov/scram001/7thconf/aermod/aermodugb.pdf

