Dredging Operations Technical Support: Ocean Disposal Database and Bioaccumulation Databases

Presented by Justin Wilkens

Environmental Laboratory

Engineer Research and Development Center Vicksburg, MS

> DOTS Webinar April 19, 2017

BUILDING STRONG®

Presentation Outline

 Dredging Operations Technical Support (DOTS)

Transferring knowledge through databases

- 1. Ocean Disposal Database (ODD)
- 2. Biota-Sediment Accumulation Factor Database (BSAF)
- 3. Environmental Residue Effects Database (ERED)

Dredging Operations Technical Support (DOTS)

- > Trusted partner since 1978
- Provide technical support to USACE
- Strong technology transfer activities

Tech note/report

Workshop/ Conference

Microsites

And a second sec

10.100 The same of the same to the standard states in the same state of the same

EXCEPTION NO. PORTO IN CONTRACT AND AND ADDRESS AND ADDRESS AND ADDRESS ADD

(i) A set of the se

Access of the Advertised

3

🔛 OCEAN DEPOSIS DATABANS

instant in the second linest

- A series with the last statistical point statistical statistical point and statistical statistical statistical point and statistical statistical

and the State of the construction of the state of the

10,000

R

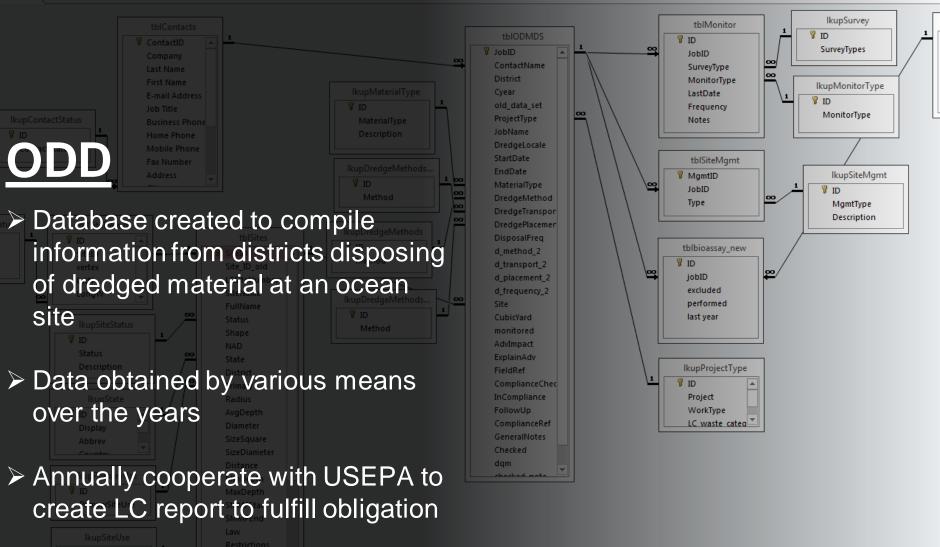
And the set of the set

Particula

a part of the second second

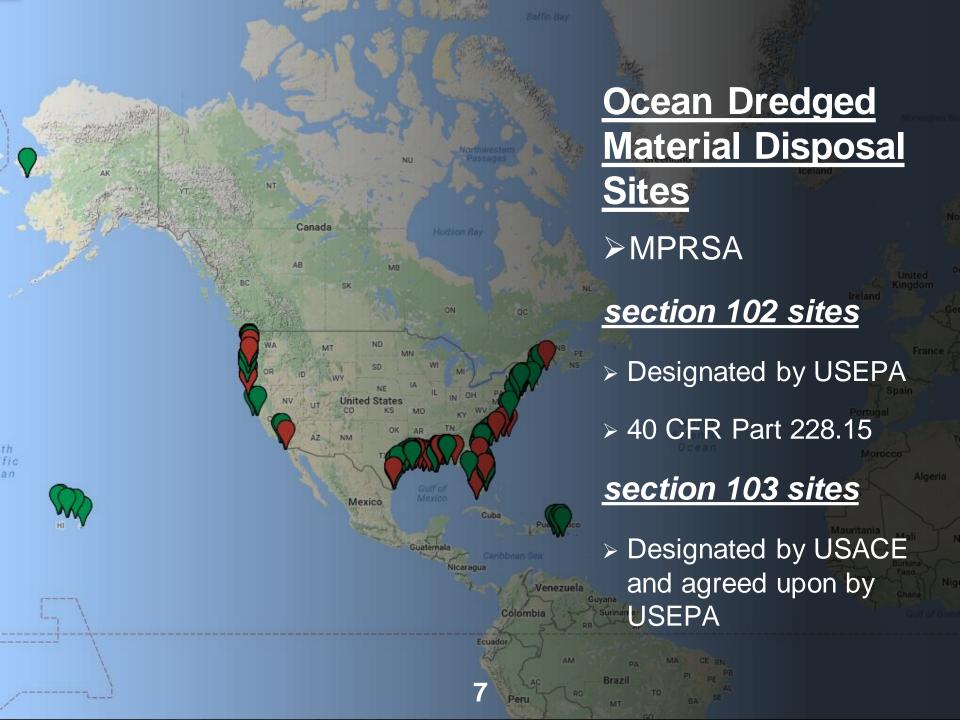
and the second se

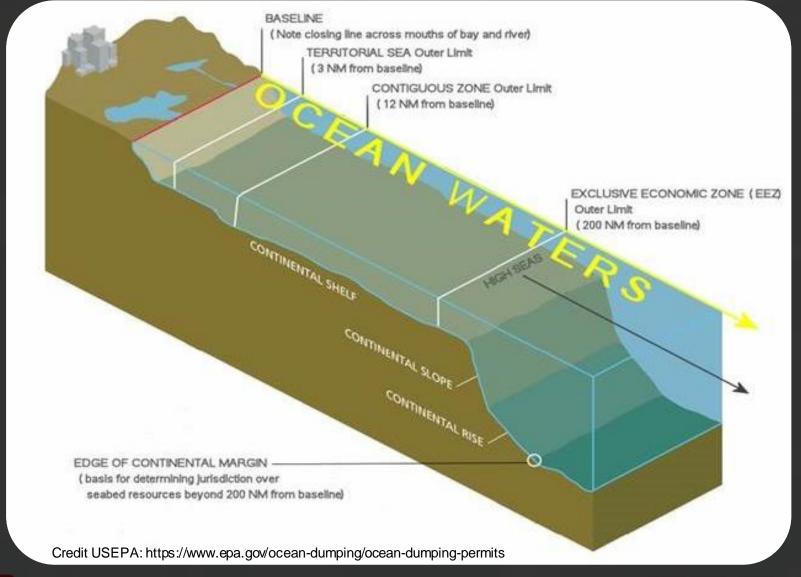
Ocean Disposal Database (ODD) https://odd.el.erdc.dren.mil/


<u>ODD</u>

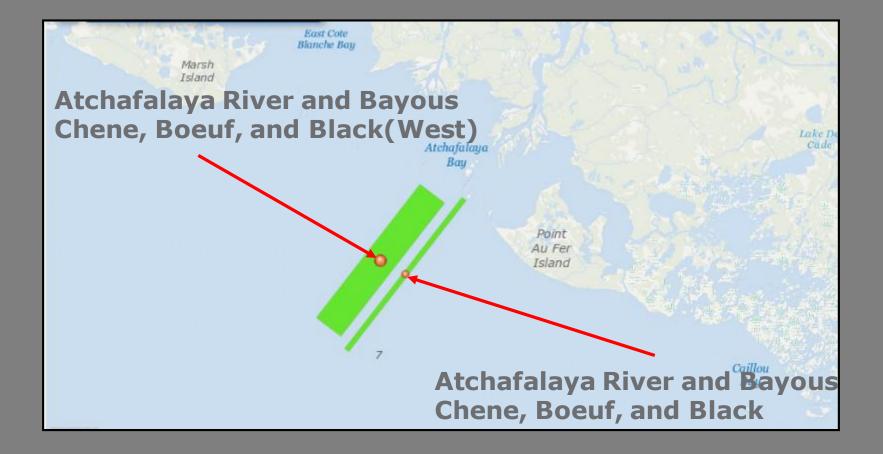
Convention on the Prevention of Marine Pollution by Dumping Wastes and Other Matter 1972 (London Convention)

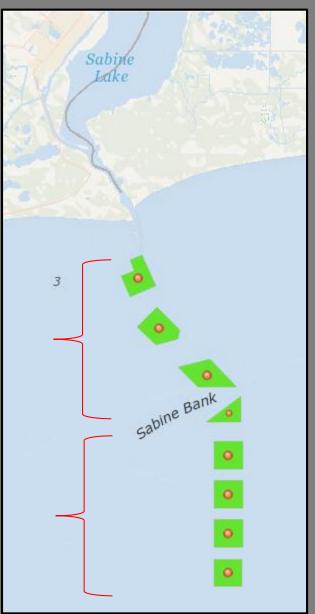
5


Marine Protection, Research and Sanctuaries Act (*MPRSA*)

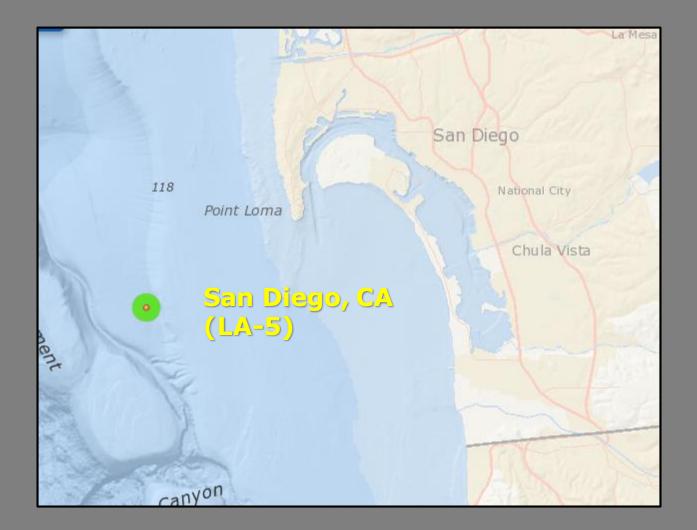


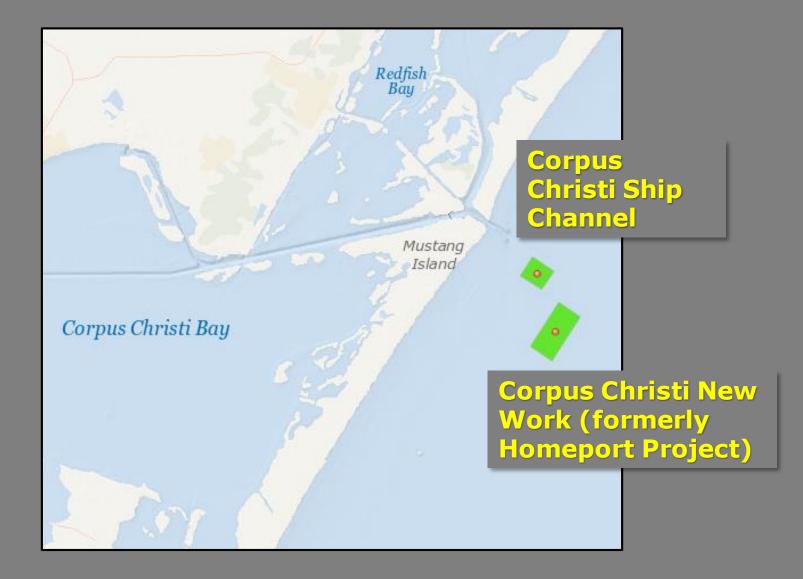
Use Desig_Date Notes smmpPLan


6



Sabine-Neches, Dredged Material Sites 1-4


Sabine-Neches Dredged Material Sites A-D



Pag

2016 OCEAN DISPOSAL DAT. SUBMITTAL FORM

Instructions: The form is used to schemic information about the recept manual disposal size. This includes size designated by (1) the USEPA designared by USACE under MPSA section 10.1 Who must schemic of schedure coses the ASACE matter MPSA section 10.1 Who must schemic Schedur coses the paperal data for *Journal J. Molecular*, 31, 3666 with comtified forms will, by necessity, by necessity *J. Browship* 21, 3666 with comtified forms will, by necessity, by networks with networks and resultant.

1. Here of Center: (First, Los (Merre)	2.05.402.0
4. Name of Dredge Project (A separat	e form should be completed for each proj
6. Location of Drodging Project Gen	Witningspi Elver, Vicioburg, #59
	•
13. Dredging Nethod #I	11. Method of Transport at 2
	•
14. Drodging Method #2	15 Method of Disposel at 5

Where was your dredged material disposed of a

19. Dirtist	19,554	

MONITORING: (1) Compliance maniforing: and/or (2) field more of deposed operations in accordance with specific site use requirem relecting process were correct and sufficient to protect the environme

21. Was compliance monitoring performed?

is there access to a compliance and/or a field moni

23. Compliance reference:

24. Field reference:

v

25. If Field Monitoring	wascondi	acted, wh	at type of
only. Select all that a			
GDMD5 are not performed as			
Before	During	After	Other.

Even provide a period black provide set of

	dumping	dumping	dumping	explain
Bathymetry	\sim	0	\sim	0
Physical	\bigcirc	0	\bigcirc	\bigcirc
Biological	\bigcirc	0	\bigcirc	$^{\circ}$
Chemical	\bigcirc	0	\bigcirc	$^{\circ}$
Other				0

INSTRUCTIONS

Purpose of form: The form is used to submit information about the disposal of dredged material at ocean dredged material disposal sites (ODMDS). This includes (1) all sites designated by the USEPA under MPRSA section 102; and (2) all short-term use sites designated by USACE under MPRSA section 103 and agreed upon by USEPA.

Who must submit data: Any USACE district transporting dredged material to an ocean site, designated under MPRSA section 102 or 103, for disposal, must submit ocean disposal data. Submit a separate form for each dredge project. Data is reported for the previous calendar year (i.e., in 2017 submit disposal data for calendar year 2016).

Question 1-4: Provide the ocean disposal point of contact, USACE district, DQM identification number (preferable) or other contract number (e.g., DIS), and dredge project name.

Question 5: Select whether the project is Federal or permitted and if the work is new or maintenance. Federal projects are authorized under MPRSA section 103 to transport uncontaminated dredged material for the purpose of disposal into ocean waters at designated sites. All other transportation of dredged material for the purpose of ocean disposal is permitted by the USACE under MPRSA section 103. New dredging work includes removal of materials previously undisturbed (e.g., new navigation channel, expansion of existing channel). Maintenance dredging is the removal of accumulated sediment from an existing navigation channel.

Question 6-8: Provide the location of the dredging project, start date, and end date. Ocean disposal is reported for a calendar year but sometimes dredge projects cross years. Only report the quantities disposed of during the requested reporting year. If the project crosses years it will need to be reported again the following year. If a project starts/stops often only report the first date dredging started in the reporting calendar year. In cases where projects cross calendar years, always use January 1 as the start date. The ending date is the date dredge operations are complete. If the project crosses calendar years, always use December 31 as the end date.

Question 9: The former selections (slurry or clumped) have been replaced by cohesive or non-cohesive (generally composed of clay, silt and fine sand and having a fluid consistency).

Question 10-17: Information about the dredge operation- Provide method used to dredge; method used to transport dredged material to an ocean site; and method use to place material at ocean site. Select the frequency of disposal. If the material is transported to a site 24/7, choose continuous; if material is transported to the ocean site during an 8-12 h work day only, choose daily; if the intervals between trips to the ocean site is longer than a day (24 h) then choose intermittently.

Question 18-20: Information about the ocean dredged material disposal site- Enter USACE district to filter ocean sites by district. Select the ocean site where the dredged material was placed. Enter the quantity in cubic yards. If your site is not listed inform the database manager and enter the site name in the notes section.

Question 21-24: Information about compliance and field monitoring is reported here. Compliance monitoring is used to verify that transport and placement conditions are met (e.g., compliance of disposal operations in accordance with specific site use requirements; was the material placed at the correct site; was the material placed in the correct area at the site; was there a short dump). This applies to Federal and permitted diredge projects. Field monitoring determines that assumptions made during permit and ODMDS selecting process were correct and sufficient to protect the environment and human health. This is often based on Environmental Impact Statements and Site Management and Monitoring Plans. Examples of field monitoring at the ODMDS include bathymetry and physical, chemical and biological testing or others (e.g., trawling surveys). If monitoring occurred select "yes". Enter a reference for a monitoring report if there is one. DQM is often reported as a compliance reference. A site management and monitoring plan is an acceptable field reference. If other references are available please list them.

Question 25: Information about the field monitoring activities at the ODMDS are reported here. This may include bathymetry and physical, biological and chemical testing. Other surveys (e.g., trawl surveys) may be reported as "other" and explained in the notes.

Question 26: Information about an adverse impact- if field monitoring determines that assumptions made during permit and ODMDS selecting process were not sufficient to protect the environment and human health then this is an adverse impact.

Question 27: Information about compliance monitoring- if the placement at sea operations were found to be in compliance with placement operations (i.e., used the correct site, no short dump, no burial of coral reefs, etc.) then select "yes". Otherwise select no and answer whether follow up action is planned (yes/no).

Question 28: Information about site management (select all that apply)- Selective disposal refers to using a specific area of the ODMDS. Seasonal restrictions refer to disposal during restricted time periods. Capping refers to disposal of material followed by covering (cap). None refers to no site management performed.

Question 29: Information about dredged material proposed to be disposed of at an ocean site- all dredge material prior to disposal at an ocean site must be tested for suitability. These tests occur approximately every 5 years depending on circumstances. If dredged material met the exclusion criteria (i.e., did not require testing- sand, rock) then answer "Yes" and stop. If the material did not meet exclusion criteria then answer "No" and enter the last year testing was completed.

Question 30: Space for additional notes or comments.

en found beyond that predicted?	
	gi
MDS please answer the following:	
2	
elect all that apply. estricted time periods. Capping refers to disposal of material	
Vas Used 🔿 None	
PA prior to disposal. Dredged material which meets criteria When dredged material does not meet the criteria in	
, commonly conducted every 5 years). If there were no	
	-
	Real Property

No

ria

Nig

ır help!

> save the form. After saving the form your signature rument so may still change responses. When ERDC ct any issues. Once accepted for inclusion into the

ed by: Disposal Database Manager, ERDC

cally signed your current form, click on "Reset Form" ton will be locked after ERDC electronically signs the GISIS: London Convention and Protocol

Members Area > London Convention and Protocol > Dump Sites

1. Contact Points 2. Dump Sites 3. Annual Activity 4. CO2 Storage 5. Monitoring

Dump Sites / United States

The LC/LP reporting system is based on the designation of dedicated sites for dumping of wastes guidance.

In this section, the sites are identified through a code and location, which is then used in the annual reporting of permits, wastes types and amounts (see tab 3, 'Annual Activity').

Site details

LC/LP dump site code:	US - 002
Site name:	Massachusetts Bay, MA

Note: Country name can be specified for 'sea area' and 'sub-sea area' below.

Western Atlantic, Eastern Pacific and Adjacent Waters 🔻
Gulf of Maine
Massachusetts Bay
Q
V Yes No

	•	Decimal degrees	O Degrees and minutes	
Centre point	Latitude	Longitude		
	42.42	-70.58	REMOVE	
ircle radius: aps:				
Title/	description:	Massachusetts Bay		
	description:			png (705 KB)

Additional information:

« Cancel

MPRSA 102 site; dredged material disposal only; NAD1983

Save »

Reporting to the International Maritime Organization (IMO)

USACE w/USEPA generate report and agree on required data

Submit data through IMO website module by October 1 for ocean disposal occurring in the previous calendar year

ODD Website Application

➢ Constructed by ERDC

Displays ODD data

	▼		

	English T	

11

Home

OCEAN DISPOSAL DATABASE

ODMDS Search Disposal Search

Welcome to the Ocean Disposal Database

The Ocean Disposal Satabase (SSD) is maintained by the Environmental Laboratory (EJ) of the U.S. Army Engineer Research and Development Center (EROC). ODD provides data to help meet the needs of the U.S. Army Corps of Engineers (USACE) operations and maintenance navigation dredging missions. OOD is supported by the Dredging Operations Technical Support program.

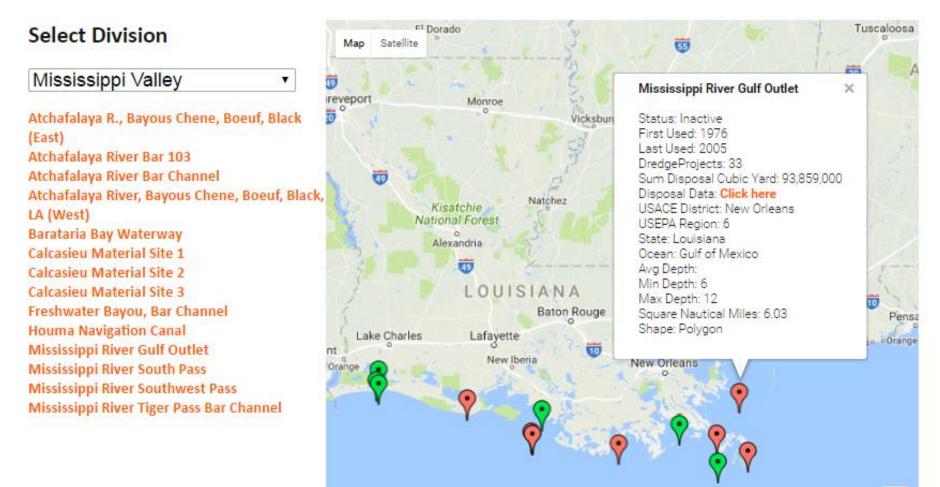
Information for over 100-Ocean Dredged Material Disposal Sites (ODMOS) from 1976 to present is available for searching. The 'ODMOS Search' displays disposal sites on a map and provides a link to disposal data for all years while the 'Disposal Search' allows visitors to sort COMDSs by USACE Division or District, USEPA Region, or Ocean and by yearis) and returns associated disposal data.

Features

ODMDS Search

Updates

3,206 diredge projects dumped into 128 ODMDSs between 1976 and 2015. The disposal data from the previous calendar year is updated in the fall of the current calendar year


Participants

Dredging Operations Technical Support D.S. Army Corps of Engineers U.S. Army Environmental Laboratory, EROC U.S. Environmental Protoction Agency International Maritime Organization **Suggested Citation Format**

Ocean Disposal Database. (Near). Environmental Laboratory, U.S. Army Engineer Research and Development Center Retrieved (Month, day, Year) from http://odd.el.erd.dren.mil.

Home	About	ODMDS Search	Disposal Search	Quick Summary
ODMDS Search				

This map contains ODMDS location markers. Filter ODMDS by USACE Division. A GREEN marker represents a site is actively used while a RED marker represents a site is inactive. Click on the marker to see a description of the site. If a site has been used, a link to disposal data will be displayed in the description. This link returns disposal data for all years. Alternatively, use the Disposal Search query to look for specific disposal year(s).

Use the filters below to view USACE projects that placed dredged material into an ODMDS. Data will be presented in an HTML table. This can be copied to your clipboard and pasted into an Excel workbook. You must make at least one selection before searching.

NOTE: Reporting requirements have changed over time; therefore, projects do not have the same level of detail nor do districts report the same level of detail. Some ODMDSs do not recieve dredge material every year so your search may return no results. Please report errors to the **database manager**.

Select a Location

USACE Division

MVD (Mississippi Valley)

USACE District

MVN (New Orleans)

Ocean

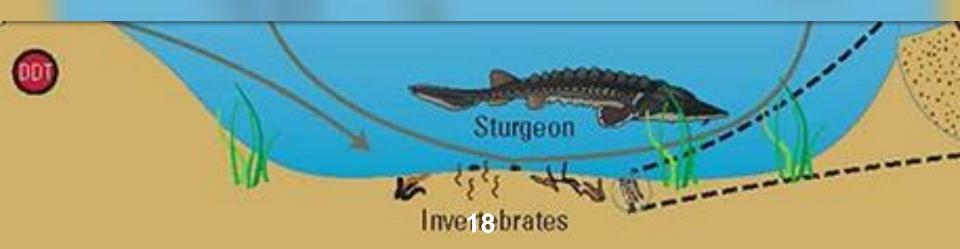
Atlantic

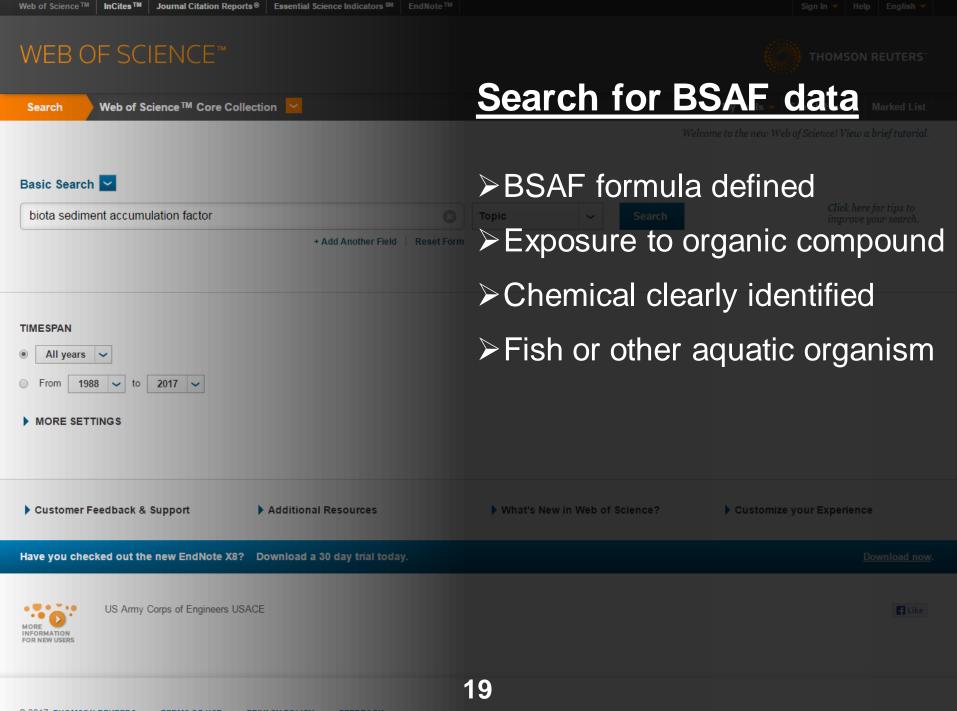
٧

٠

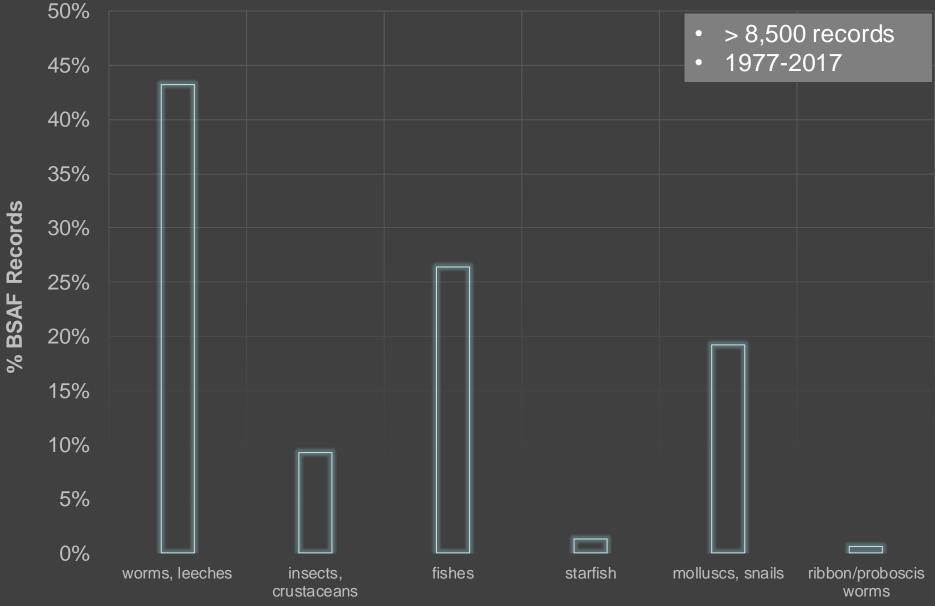
USEPA Region

Region 1


From 2015 To 2015



A dredge works in Galveston Bay in order to ensure America's waterways remain open for navigation and commerce (DVID photo).


Biota-Sediment Accumulation Database (BSAF) https://bsaf.el.erdc.dren.mil/

Welcome to the Bioaccumulation Database												
About	Biota-		tor	Environ Residue E	ffects Test Anima	als Test Chemic	als References					
BSAF Da	ata E	ntry	New	Edit	Delete Sa			REF ID# 30	63			
Ref Display:	Aamire	et al 2017		Year: 2017	RefDB BSAF		BSAF & Jupport	Link C:\E	AF Papers\20			
Author(s):	Aamir	M, S Khan, M Tang, Z (Qamar, A	Khan, J Nawab			eviev	v and	AE Papers\20			
Title:		ner-specific evaluatio			nulation factor mode	I for HCHs and DE	DTs under small-					
		n situe riverine condit							F normalized t			
JournalID	Journal	l of Soil and Sedimen	ts			Vol: E	ompi	le Da	Ita			
BSAFID -t	STyp -	Species 👻	w/c -	OrgCollectN	lote - Age	- Chem -	Wat	- Lndmrk - S	ed - Time			
11505	F	Schizothorax pla 💌	W	NI	Adult	alpha-HCH	Kabul River	downstrear	N Feb			
11506	F	Schizothorax plagio	W	NI	Adult	beta-HCH	Kabul River	downstrear	N Feb			
11507	F	Schizothorax plagio	W	NI	Adult	Lindane	Kabul River	downstream	N Feb			
11508	F	Schizothorax plagio	W	NI	Adult	Hexachloro	Kabul River	downstrear	N Feb			
11509	F	Schizothorax plagio	W	NI	Adult	HCH [total]	Kabul River	downstrear	N Feb			
11510	F	Schizothorax plagio	W	NI	Adult	o,p'-DDE	Kabul River	downstrear	N Feb			
11511	F	Schizothorax plagio	W	NI	Adult	p,p'-DDE	Kabul River	downstrear	N Feb			
11512	F	Schizothorax plagio		NI	Adult	o,p'-DDD	Kabul River	downstream	N Feb			
11513	F	Schizothorax plagio	W	NI	Adult	p,p'-DDD	Kabul River	downstream	N Feb			
11514	F	Schizothorax plagio	W	NI	Adult	o,p'-DDT	Kabul River	downstrear	N Feb			
11515	F	Schizothorax plagio	W	NI	Adult	p,p'-DDT	Kabul River	downstrear	N Feb			
11516	F	Schizothorax plagio	W	NI	Adult	DDTs [total]		downstrear	N Feb			
11517	F	Tor putitora	W	NI	Adult	alpha-HCH		downstream	N Feb			
11518	F	Tor putitora	W	NI	Adult	beta-HCH	Kabul River	downstream	N Feb			
11519	F	Tor putitora	W	NI	Adult	Lindane	Kabul River	downstrear	N Feb			
11520	F	Tor putitora	W	NI	Adult	Hexachloro		downstream	N Feb			
11521	F	Tor putitora	W	NI	Adult	HCH [total]		downstream	N Feb			
11522	F	Tor putitora	W	NI	Adult	o,p'-DDE	Kabul River	downstream	N Feb			
11523	F	Tor putitora	W	NI	Adult	p,p'-DDE	Kabul River	downstream	N Feb			
11524	F	Tor putitora	W	NI	Adult	o,p'-DDD	Kabul River	downstream	N Feb			
11525	F	Tor putitora	w	NI	Adult Adult	p,p'-DDD	Kabul River	downstream	N Feb			
11526	F	Tor putitora				o,p'-DDT	Kabul River	downstrear				
11527 11528	F	Tor putitora Tor putitora	w	NI	Adult Adult	p,p'-DDT DDTs [total]	Kabul River	downstrear	N Feb			
11528	F	Glyptothorax punja	w	NI	Adult	alpha-HCH		downstrear	N Feb			
11530	F	Glyptothorax punja	w	NI	Adult	beta-HCH	Kabul River	downstream	N Feb			
11530	F	Glyptothorax punja	w	NI	Adult	Lindane	Kabul River	downstream	N Feb			
11532	F	Glyptothorax punja	w	NI	Adult	Hexachloro		downstream	N Feb			
11533	F	Glyptothorax punja	w	NI	Adult	HCH [total]		downstream	N Feb			
11534	F	Glyptothorax punja	W	NI	Adult	o,p'-DDE	Kabul River	downstream	N Feb			
11535	F	Glyptothorax punja	w	NI	Adult	p,p'-DDE	Kabul River	downstream	N Feb			
11500	-	Churteth and a start	147	NI	<u> 20 </u>	! 000	Maland Diman	-1	NI 7-1-			

Distribution of BSAF records

Group

BSAF Website

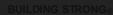
>Constructed by ERDC

Displays BSAF data

Database

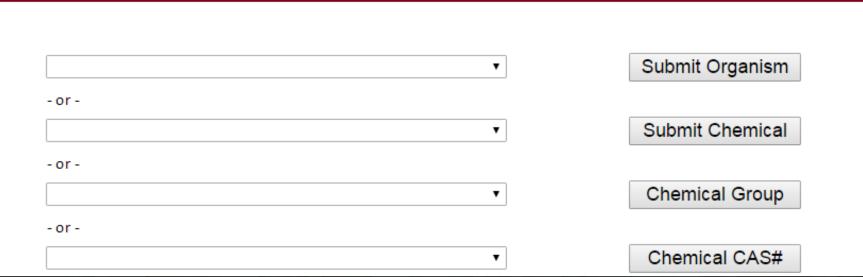
ulation Factor database (BSAF) is maintained by the Enviror ch and Development Center. BSAF provides data to help m perations and maintenance navigation dredging missions. B Technical Support program.

Refer


209 species from 1987 to 2015.

ormat

should be credited as follows: Biota-Sediment Accumulatio U.S. Army Engineer Research and Development Center, Re


BSAF Home	About	Data	Structure	References
BSAF Data				

Filters are used to view BSAF data for different species and chemicals. Data will be presented in a table for viewing and/or download. To download select "create excel spreadsheet". Additional supporting information such as full citation will be included in the download.

Alternatively, Press CTRL+A to select the entire table. Next, press CTRL+C to copy. Finally, open an Excel workbook and either Press CTRL+V to paste or right click your mouse and select the paste option. Optionally, you may save the results page as an HTML page and then open from MS Excel. In Internet Explorer save as type should be 'webpage, HTML only', while in Chrome save as type should be 'webpage, complete'.

Note: In an effort to help interpret BSAF numbers additional supporting information is currently being obtained from the literature. Unfortunately, BSAF numbers will not have the same level of supporting information nor do studies report the same level of detail. See the **Structure** page for data field information

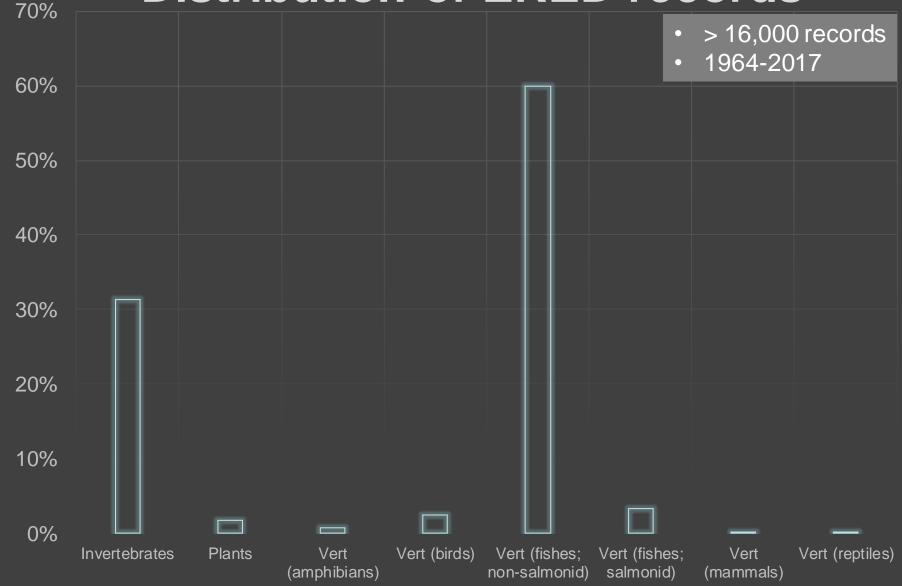
Basic Search

Environmental Residue Effects Database (ERED) https://ered.el.erdc.dren.mil/

res·i·due /ˈrezəˌd(y)oo/)

noun

a small amount of something that remains after the main part has gone or been taken or used. synonyms: remainder, remaining part, rest, remnant(s); More Search

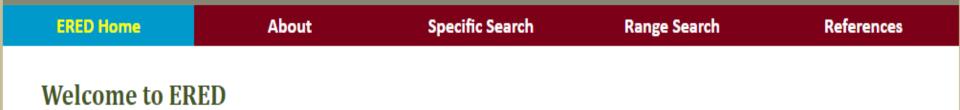

Web of Science ™ InCites ™ Journal Citation Reports® Essential Science Indicators SM EndNote ™

Search for residue effects data

Results: 2,120 (from All Databases)	Sort by	Publication Date newest to oldest	▲ Page 1 of 212 ▶
You searched for: TOPIC: (residue effects)More	🗌 Seleo	Chemical clearly identified	🚊 Analyze Results
Refine Results	□ 1.	Molecular Dynamics a Set Effects linked to a single containing the set of the	ontaminant
Search within results for		By: Farrokhnia, Maryam, Mahnam, Kaim IRANIAN JOURNAL OF PHILEMAN, RESEARCH, Viume, It Issuer 1, Pages, 173-185, Polished, Will 2017 Fish and other aquatic org	usans Count ~ anism
Databases 📢	- -		Timore Citatela 0
Research Domains SCIENCE TECHNOLOGY (1,584) SOCIAL SCIENCES (127) ARTS HUMANITIES (3)	2.	Nanostructure of Poly(Acrylic Acid) Adsorption Layer on the Surface of Activated Carbon Obtained from Residue After Supercritical Extraction of Hops. By: Wisniewska, M; Nosal-Wiercinska, A; Ostolska, I; et al. Nanoscale research letters Volume: 12 Issue: 1 Pages: 2 Published: 2017-Dec (Epub 2017 Jan 03) Links Full Text from Publisher View Abstract	Times Cited: 0 (from All Databases) Usage Count ∽
Refine	3.	Determination of hymexazol in 26 foods of plant origin by modified QuEChERS method and liquid chromatography tandem-mass spectrometry.	Times Cited: 0 (from All Databases)
Research Areas		By: Jiang, Zejun; Li, Hui; Cao, Xiaolin; et al. Food chemistry Volume: 228 Pages: 411-419 Published: 2017-Aug-01 (Epub 2017 Feb 08) → Links Full Text from Publisher View Abstract	Usage Count 🗸
BIOCHEMISTRY MOLECULAR BIOLOGY (611)	4.	Unraveling the inhibition mechanism of cyanidin-3-sophoroside on polyphenol oxidase and its effect on enzymatic browning of apples.	Times Cited: 0 (from All Databases)
 TOXICOLOGY (594) ENVIRONMENTAL SCIENCES ECOLOGY (566) AGRICULTURE (464) 		By: Hemachandran, Hridya; Anantharaman, Amrita; Mohan, Sankari; et al. Food chemistry Volume: 227 Pages: 102-110 Published: 2017-Jul-15 (Epub 2017 Jan 18)	Usage Count ~
more options / values			
Refine	5.	Characterization of Maillard-type lysozyme-galactomannan conjugate having immune-enhancing effects.	Times Cited: 0 (from All Databases)
Document Types		By: Yang, Jae-Eon; Chun, Su-Hyun; Kim, Ha Hyung; et al. Food chemistry Volume: 227 Pages: 149-157 Published: 2017-Jul-15 (Epub 2017 Jan 17)	Usage Count 🗸
Authors		→ Links Full Text from Publisher 25	

Welcome to the Bioaccumulation Database															
Abou	t Bio	ota-Sediment Accu	im. Factor	Envir		fects Tes	t Animals	Test	Chemicals	References					
ERED Data Entry New Edit Delete SREVIEW CLADO 3066															
Ref Disp	ay: Wang	Wang et al Year: 2016 RefDB ERED - link: C:\ERED Paper													
Author(s): Wang	Wang Y, LLV, Y Yu, G Yang, Z Xu, Q Wang, L Cai													
Title:	Single	Wang Y, LLV, Y Yu, G Yang, Z Xu, Q Wang, L Cai Single and joint toxic effects of five selected pesticides on the early life stages of ze Comple Data													
		e oomplic Data													
Journal:	Chem	Chemosphere Vol: 170 Pg: 61-67													
Type:	Journ	al 💌 Refere	nce used?	Y	Date	Modified:	3/20/2017		EPAecotox:	No	-				
					for no. The referen										
Add/Edit ERED Data Lock Spreadsheet refresh to hide this literature.															
EREL	rt Study -	4 Analyte -	Mix -	Sniked -	ChemExp -	DoseFreq	- Evnos	ure	- Evo Boute	- Meas -	Exp Conc 🚽	units 🚽	stat		
17280		Phoxim	No	Yes	water	1x/24 h		eous	water	U	45.72	mg/L	Me		
1728		Atrazine	No	Yes	water	1x/24 h		eous		U	98.5		Me		
17282		Chlorpyrifos	No	Yes	water	1x/24 h		eous	water	U	119.7	mg/L	Me		
17283	B Lab	Butachlor	No	Yes	water	1x/24 h		eous	water	U	5.49		Me		
17284	Lab	Cyhalothrin	No	Yes	water	1x/24 h		eous	water	U	6.77	mg/L	Me		
17285	5 Lab	Phoxim	No	Yes	water	1x/24 h		eous	water	U	26.48	mg/L	Me		
17286	5 Lab	Atrazine	No	Yes	water	1x/24 h	aque	eous	water	U	34.19	mg/L	Me		
17287	7 Lab	Chlorpyrifos	No	Yes	water	1x/24 h	aque	eous	water	U	13.03	mg/L	Me		
17288	B Lab	Butachlor	No	Yes	water	1x/24 h	aqui	eous	water	U	1.93	mg/L	Me		
17289) Lab	Cyhalothrin	No	Yes	water	1x/24 h	aqu	eous	water		0.066	mg/L	Me		
17290) Lab	Phoxim	No	Yes	water	1x/24 h	aqu	eous	water	U	1.27	mg/L	Me		
17291	L Lab	Atrazine	No	Yes	water	1x/24 h	aque	eous	water	U	27.37	mg/L	Me		
17292	2 Lab	Chlorpyrifos	No	Yes	water	1x/24 h	aque	eous	water	U	0.39	mg/L	Me		
17293	B Lab	Butachlor	No	Yes	water	1x/24 h	aqu	eous	water	U	0.59	mg/L	Me		
17294	Lab	Cyhalothrin	No	Yes	water	1x/24 h	aqu	eous	water	U	0.66	mg/L	Me		
17293	5 Lab	Phoxim	No	Yes	water	1x/24 h	aqu	eous	water	U	0.89	mg/L	Me		
17296	5 Lab	Atrazine	No	Yes	water	1x/24 h	aque	eous	water	U	15.63	mg/L	Me		
17297	7 Lab	Chlorpyrifos	No	Yes	water	1x/24 h	aque	eous	water	U	0.28	mg/L	Me		
17298		Butachlor	No	Yes	water	1x/24 h	aque	eous	water	U	0.45	mg/L	Me		
17299		Cyhalothrin	No	Yes	water	1x/24 h	aque	eous	water	U	0.38	mg/L	Me		
17300		Phoxim	No	Yes	water	1x/24 h		eous	water	U	1.38	mg/L	Me		
17301		Atrazine	No	Yes	water	1x/24 h		eous	water	U	10.1	mg/L	Me		
17302		Chlorpyrifos	No	Yes	water	1x/24 h		eous	water	U	1.85	mg/L	Me		
17303		Butachlor	No	Yes	water	1x/24 h		eous	water	U	1.62	mg/L	Me		
17304		Cyhalothrin	No	Yes	water	1x/24 h		eous	water	U	0.005	mg/L	Me		
17305		Phoxim	No	Yes	water	1x/24 h		eous	water	U	1.01	mg/L	Me		
17306		Atrazine	No	Yes	water	1x/24 h		eous	water	U	6.09	mg/L	Me		
17307		Chlorpyrifos	No	Yes	water	1x/24 h	· · · · ·	eous	water	U	1.32	mg/L	Me		
17209	2 Lah	Rutachlor	No	Vac	water	-2074 h	9010	00116	water		0 99	ma/i	Mo		

Distribution of ERED records



% **ERED** records

Group

ENVIRONMENTAL RESIDUE-EFFECTS DATABASE (ERED)

The ERED is a collection of residue-effects data obtained from peer-reviewed literature and reports submitted by U.S. government agencies. The database was developed by researchers at the U.S. Army Engineer Research and Development Center Environmental Laboratory through support provided by the **Dredging Operations Technical Support** program. The ERED data are useful for comparing measured tissue concentrations from a bioaccumulation test - such as those performed to evaluate dredged sediments - to published information that describes the relationship between contaminant tissue concentration and the likelihood of an adverse effect.

Features

Search by species (Specific Search)

Search by group of animals and chemicals (Range Search)

Browse by references and retrieve data (References)

ERED Home	About	Specific Search	earch		Re	References					
Show 💽 entries 🔹		▼	1	÷		Searc) Reco		<u>A</u>	Dar	ta 🍦	
Invert (corals, anemones, hydras)		Metals				42			Click her	e	
Invert (insects, crustaceans)		Dioxins				15			Click her	e	
Invert (insects, crustaceans)		Explosives				45			Click her	e	
Invert (insects, crustaceans)		Metals			:	1064			Click here		
Invert (insects, crustaceans)		Organotins				23		Click here			
Invert (insects, crustaceans)		PAHs			250			Click here			
Invert (insects, crustaceans)		PCBs			113		Click here				
Invert (insects, crustaceans)		Pesticides			432			Click here			
Invert (insects, crustaceans)		Pharm./Personal Care Products				31			Click her	e	
Invert (insects, crustaceans)		Phenols				17			Click her	e	
Invert (insects, crustaceans)		Phthalates				26			Click her	e	
Invert (insects, crustaceans)		VOCs			71			Click her	e		
Invert (molluscs, snails)		Amines, Anilines				8			Click her	e	
Invert (molluscs, snails)		Dioxins				5			Click her	e	
Invert (molluscs, snails)		Explosives				7			Click her	e	
Showing 1 to 15 of 104 entries		Previous	1	2	3	4	5	6	7	Next	

ERED Home	ERED Home About Specific Search Range Search												
Сору			Sea	rch:									
	Author(s), year,	, title, journal/book/report			ERED records	Data 🍦							
Abalos et al. 2008. Effects on gr dietary exposure to low levels o	rm	14	Click here										
Abbas et al. 1996. Toxicokinetic Exposure. Toxicol Appl Pharm 1	er	2	Click here										
Abel and Barlocher. 1988. Upta 231	5:223-	6	Click here										
Absil et al. 1996. The Influence Aquat Toxicol 34:13-29	of Sediment, Food and Org	anic Ligands on the Uptake of Co	pper by Sediment-Dwelling Bi	valves.	6	Click here							
		DDT to p,p'-DDE by Brook Trout (Sa p,p'-DDT. J Fish Res Board Can 34	-	of	7	Click here							
Addison et al. 1976. Metabolisr Fry. J Fish Res Board Can 33:207	-	Doses of 14c-Aldrin and 3h-p,p'-D	DT by Atlantic Salmon (Salmo	salar)	2	Click here							
Addison et al. 1978. Induction of Aroclor 1254 or 3-Methylcholar		oxidase <mark>(</mark> MFO) Enzymes in Trout (Sys C 61:323-325	Salvelinus fontinalis) by Feedir	g	4	Click here							
Ahrens et al. 2002. Sensitivity o 17:567-577	oxicol	4	Click here										
Ahsanullah and Williams. 1991. Amphipod Allorchestes compre		ccumulation of Cadmium, Chrom	ium, Copper and Zinc in the N	larine	9	Click here							
Aisemberg et al. 2005. Compar Toxicology 210:45-53	ative Study on Two Freshwa	ater Invertebrates for Monitoring	Environmental Lead Exposure	<u>.</u>	11	Click here							
Showing 1 to 10 of 1,148 entries		Previous	1 2 3 4	5	115	Next							

You are viewing ERED for Abalos et al.2008.Chemosphere 73:5305-5310.

Copy	SV Excel															Search:
Туре 🕴	Genus Species 🕴	desc 🔅	life stage 🔅	Analyte Name 🕴	CAS No	Mix 0	Conc. Wet (mg/kg) 0	No. Reps 🔅	Exp Route 🔅	fraction \Diamond	Effect 0	Risk 🕴	% effect 🕴	trend 0	Comments 0	Source \$
Lab	Sparus aurata	ray-finned	Juvenile	2,3,7,8-TCDD	1740- 01-6	No	0.00487	2	Ingestion	Muscle	Biochemical	ED 177	N/I	N/I	Up regulated EROD	Abalos et al.2008.Chemosphere 73:5305- 5310
Lab	Sparus aurata	ray-finned	Juvenile	2,3,7,8-TCDD	1746- 01-6	No	0.00487	2	Ingestion	Muscle	Biochemical	IP 706	N/I	N/I	Up regulated AhR expression	Abalos et al.2008.Chemosphere 73:5305- 5310
Lab	Sparus aurata	ray-finned	Juvenile	2,3,7,8-TCDD	1740- 01-6	No	0.00487	2	Ingestion	Muscle	Biochemical	NOEC	N/I	N/I	GST	Abalos et al.2008.Chemosphere 73:5305- 5310
Lab	Sparus aurata	ray-finned	Juvenile	2,3,7,8-TCDD	1746- 01-6	No	0.00487	2	Ingestion	Muscle	Blochemical	NOEC	N/I	N/I	catalase	Abalos et al.2008.Chemosphere 73:5305- 5310
Lab	Sparus aurata	ray-finned	Juvenile	2,3,7,8-TCDD	1746- 01-6	No	0.00487	2	Ingestion	Muscle	Biochemical	NDEC	N/I	N/I	T-GPx	Abalos et al.2008.Chemosphere 73:5305- 5310
Lab	Sparus aurata	ray-finned	Juvenile	2,3,7,8-TCDD	1746- 01-6	No	0.00487	2	Ingestion	Muscle	Biochemical	NOEC	N/I	N/I	Lipid peroxidation as MDA	Abdos et al.2008.Chemosphere 73:5305- 5310
Lab	Sparus aurata	ray-finned	twende	2,3,7,8-1000	1746 01 6	No	D.00/187	2	Ingestion	Muscle	Cellular	NOEC	N/I	N/I	CYPIA1	Abalos et al.2008.Chemosphere 73:5805 5810
Lab	Sparus aurata	ray finned	Juvenile	2,3,7,8 TCDD	1746- 01-6	No	0.00783	2	Ingestion	Liver	Blochemical	ED 177	N/I	N/I	Up regulated EROD	Abalos et al.2008.Chemosphere 73:5305- 5310
Lab	Sparus aurata	ray-finned	Juvende	2,3,7,8-1000	1746 01-6	No	0.00783	z	Ingestion	Liver	Biochemical	IP 706	N/I	N/I	Up regulated AhR expression	Abalos et al.2008.Chemosphere 73:5805- 5810
Lab	Sparus aurata	ray-finned	Juvenile	2,3,7,8-TCDD	1746- 01-5	No	0.00783	2	Ingestion	Liver	Biochemical	NOEC	N/I	N/I	GST	Abalos et al.2008.Chemosphere 73:5305- 5310
Lab	Sparus aurata	ray-finned	Juvenile	2,3,7,8-TCDD	1746- 01-6	No	0.00783	z	Ingestion	Liver	Biochemical	NDEC	N/I	N/I	catalase	Abalos et al.2008.Chemosphere 73:5805- 5310
Lab	Sparus aurata	ray-finned	Juvenile	2,3,7,8-TCDD	1746- 01-5	No	0.00783	2	Ingestion	Liver	Biochemical	NOEC	N/I	N/I	T-GPx	Abalos et al.2008.Chemosphere 73:5305- 5310
Lab	Sparus aurata	ray-finned	Juvenile	2,3,7,8-TCDD	1746- 01-6	No	0.00783	z	Ingestion	Liver	Biochemical	NOEC	N/I	N/I	Upid peroxidation as MDA	Abalos et al.2008.Chemosphere 73:5305- 5310
Lab	Sparus aurata	ray-finned	Juvenile	2,3,7,8-TCDD	1746- 01-5	No	0.00783	2	Ingestion	Liver	Cellular	NOEC	N/I	N/I	CYPIA1	Abalos et al.2008.Chemosphere 73:5305- 5310
Showing 1 to	14 of 14 entries															Previous 1 Next

Innovative solutions for a safer, better world

Transferring knowledge through databases

- > Ocean Disposal Database (ODD)
 - https://odd.el.erdc.dren.mil/
- Biota-Sediment Accumulation Factor Database (BSAF)
 - <u>https://bsaf.el.erdc.dren.mil/</u>
- Environmental Residue Effects Database (ERED)
 - https://ered.el.erdc.dren.mil/

Questions?