# Monitoring Piping Plovers in the Great Plains

#### Mike Larson

USGS Patuxent Wildlife Research Center Laurel, Maryland

1

2

#### **Preview**

- International PIPL Census
- Important monitoring issues
- A specific proposal





# **Census methods**

- 1991, 1996, 2001
- 2 weeks in June
- All sites known to be occupied or contain habitat in last 5 years

5

• Count all adults exactly once

| Census results |        |         |          |       |
|----------------|--------|---------|----------|-------|
|                | Obser- | S       |          |       |
| Year           | vers   | visited | occupied | Count |
| 1991           |        | 1121    | 0.38     | 3,469 |
| 1996           | 351    | 837     | 0.39     | 3,286 |
| 2001           | 414    | 958     | 0.41     | 2,953 |
|                |        |         |          | 6     |





#### An identified need...

 to provide scientifically defensible estimates of PIPL abundance in the Great Plains



9

Important monitoring issues





- Is documentation enough?
- Is there a greater scientific or management framework?
  - Science: a priori hypotheses
  - Mgt.: state-dependent decisions

# **Objectives**

- Define the population
- Select a state variable
  - Abundance, Site occupancy (good)
  - Status, Trend (not good)

#### **Methods**

- Detectability
  - counts are usually incomplete
- Spatial sampling design
  - inability to sample everywhere
  - geographic variation



- N = C / p
  N = abundance, C = count
- Census, N = C
   assumes p = 1
- Index,  $N_2 / N_1 = C_2 / C_1$ • assumes  $E(p_1) = E(p_2)$



## **Estimating detectability**

- Marking birds
  - Individually



- · Good analysis methods available
- Very difficult logistically
- Generically
  - Lincoln-Petersen estimator
  - Banding required before each survey



#### **Spatial sampling design**

- Lots of options
  - stratified, systematic, cluster, dual-frame, adaptive
- Random selection
- Sampling where birds are not



#### **Objectives**

- Population: entire population of adult piping plovers in the Great Plains and Prairie Canada
- To estimate abundance every 5 years in geographic units identified in the Recovery Plan



#### **Double-observer method**

- Primary observer sees birds and tells secondary observer
- Secondary observer records birds seen by primary observer and additional birds (s)he sees



# **Double-observer method**

$$E(x_{11}) = Np_1 \qquad E(x_{21}) = Np_2$$
$$E(x_{12}) = N(1-p_2)p_1 \qquad E(x_{22}) = N(1-p_1)p_2$$
$$\bigwedge_{p=1}^{n} - \frac{x_{12}x_{21}}{x_{22}x_{11}}$$





| Str21 | ranc | om samp     |  |
|-------|------|-------------|--|
|       |      | UIII Salliy |  |
|       |      |             |  |

| Prop. of:   | Sites | Plovers |
|-------------|-------|---------|
| Small lakes | 0.60  | 0.60    |
| Large lakes | 0.05  | 0.05    |
| Rivers      | 0.30  | 0.15    |
| Reservoirs  | 0.05  | 0.20    |
|             |       |         |

# **Estimation methods**

- Count plovers at all sites
- Estimate *p* at a subset of sites
  - and mean p by strata
- Estimate *N* at all sites
- Calculate *N* for the population

#### **Sample sizes**

- Estimate *p* at 10-20% of sites
  - 100-200 sites
  - 2-6 estimates per stratum
- If mean *p* within strata...
  - >0.8 with SE < 0.1...

| Hypothetical results |       |      |                 |                |
|----------------------|-------|------|-----------------|----------------|
|                      | Count | Ν    | var( <i>N</i> ) | SD( <i>N</i> ) |
| Site                 | 8     | 10   | 4               | 2              |
| Population           | 3000  | 3750 | 1775            | 42             |
|                      |       |      |                 | 31             |







#### **Assumptions**

 Inference method requiring the most assumptions that are least likely to be valid: naïve reliance on counts

# Sampling for detectability

- Stratify for consistent p
  - habitat
    - small lakes, large lakes, rivers
  - •???

#### **Double-observer method**

- 2 people visit a series of sites
- They alternate being primary and secondary observers
- Allows flexible modeling of detection probabilities

#### Preview

- Define objective(s)
- Sampling issues
  - Why not census?
- Analysis issues
  - Power analysis

#### **Monitoring objectives**

- Estimate parameters for a demographic model
- Evaluate the effectiveness of management activities



- Determine the status of a population
- Detect trends in abundance
  - provides insight into status



- Spatial scale
  - Piping plovers in the US Great Plains and Prairie Canada
  - Where do movements occur?
- Temporal scale
  - When do movements occur?

|      | <b>Census results</b> |         |          |  |
|------|-----------------------|---------|----------|--|
|      | Obser-                | Sites   | Sites    |  |
| Year | vers                  | visited | occupied |  |
| 1991 |                       | 1121    | 0.38     |  |
| 1996 | 351                   | 837     | 0.39     |  |
| 2001 | 414                   | 958     | 0.41     |  |
|      |                       |         | 42       |  |



# Why census is inadequate

- Census assumes every bird is counted (detection prob. = 1)
- Detection problems at 2 scales
  - Not all sites visited
  - Imperfect counting at each site
  - What if detection differs? by 0.15?
- Other methods are better

# **Spatiotemporal scales**

- Evolutionary time: full mixing
- Annual: major redistributions
- Within a breeding season:
  - stable during core time
  - some inter-basin movement