Deriving Sensible, Risk-Based Cleanup Targets

Todd S. Bridges¹, Randy Sturgeon² and Bridgette DeShields³

¹U.S. Army Engineer Research and Development Center ²U.S. Environmental Protection Agency, Region 3 ³Blasland, Bouck, and Lee, Inc.

Key Word: Sensible

"marked by the exercise of good judgment or common sense in practical matters" www.cogsci.princeton.edu/cgi-bin/webwn

Often, what makes perfectly good sense to me is non-sense to you.

"Target" is more than just a "number"

- Needs to incorporate a bigger picture of the cleanup (i.e., put in context)
- There are a variety of ways to get to "protective"

Randy Sturgeon – Top Ten Principles for Deriving Sensible Risk-Based CleanupTargets

Todd Bridges – Methods for our Madness

Bridgette DeShields – Case Studies

10. Garbage In, Garbage Out

- Start with a good Conceptual Site Model
- Tie your cleanup target back to the CSM to show how your cleanup will address each of the risk scenarios

9. Engage a range of stakeholders in the "target" development

- Many obstacles on the way to success, find them out early
- Easy to poke holes in others' ideas, so strive for win-win solutions
- Natural tension between stakeholders (e.g., Trustees and PRPs) can be helpful in deriving "sensible" targets

8. A target that is not understood by the RPM/OSC has little hope of being called "sensible".

- Get to know your RPM/OSC
- May have to spend time teaching them about sediment issues, especially *your* sediment issues
- Just don't tell them they need to learn something!

7. A sensible target today, may not be in the future

- NCP: "....adequately protect human health and the environment, in both the short- and long-term,...."
- Sediment stability, cap longevity, recontamination, acute vs. chronic impacts, changes in the eco-system...

6. Sensible targets must take into account implementability issues

- Can dredging make it as clean as we would like?
- Can I realistically find every bit of sediment above a certain number?
- Are we going to create more problems than we fix?

5. The law of diminishing returns

- Due to uncertainty and unknowns, we will never develop the "perfect" criteria
- At some point, the time to decrease uncertainty through, for example, more studies, causes years of on-going, significant impacts
- At what point does pushing for the most protective cleanup cause delays that cost the environment?

4. Evaluate cost per incremental, additional cleanup

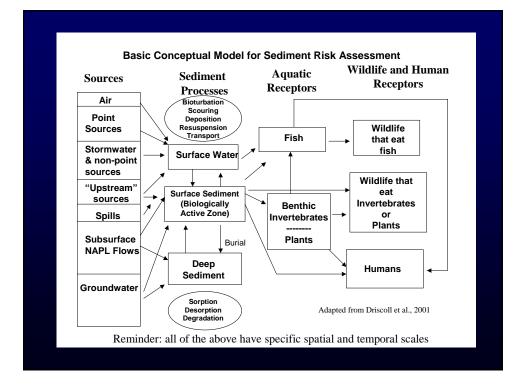
- What is the acceptable risk range for your site?
- What is the difference in cost at varying points in this range?

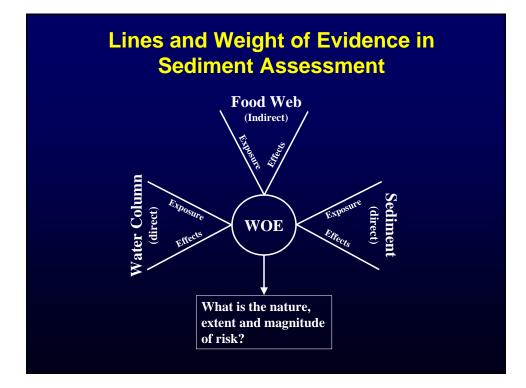
3. Sensible targets must be measurable so success can be determined

- Measuring attainment of a sediment remediation goal is easy, but what about the expected environmental benefit?
- Do you have an adequate baseline?
- Time to expected outcome?

2. A sensible target that is not explained well becomes non-sense to others

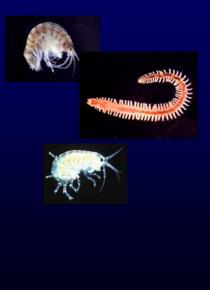
- Clearly tie the sediment remediation goals to the protection of the receptors in the CSM
- Clearly explain how the target will lead to the desired environmental benefit (e.g., lowered fish body burden allowing consumption)


1. Does it pass the RPM/OSC laugh test?


- Has cost been raised to a threshold criteria?
- Is the acceptable risk range between background and an ER-L?
- Is this a restoration project or cleanup project?
- Can the RPM/OSC explain it to someone else?

Developing Technically Sound Cleanup Targets

- Technical soundness
 - Using process-level information about the nature of risks (what, where, when and how they are occurring) to develop a scientifically credible and logical basis for reducing those risks
 - Draws upon the RI
 - Focuses on pathways



Clean-up Targets for Direct-Sediment Risks

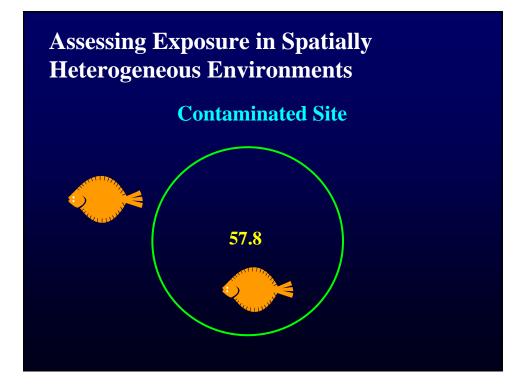
- Risks defined using some combination of toxicity tests, SQGs, benthic community structure, and exposure data
 - Spatial extent of exposure, effect and risk
 - Duration/persistence of conditions

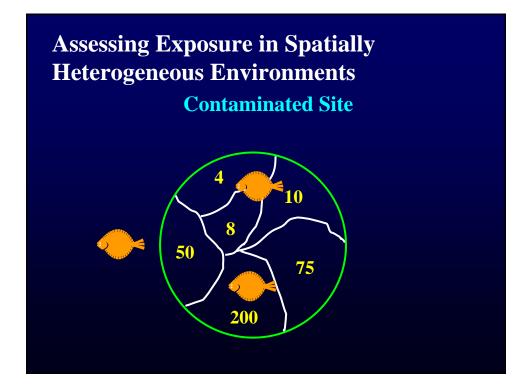
Spatial and Temporal Extent

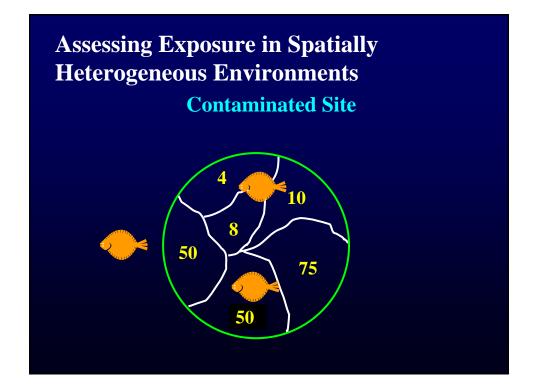
- Defining the spatial distribution of exposure, effect, and risk
 - Site conditions, e.g., heterogeneity
- How persistent are the conditions?
 - Seasonal differences in toxicity
 - Changes in binding phases, AVS
 - Groundwater interactions
 - Other stresses
 - STD- sedimentation, transformation, degradation

Gunpowder River APG Sampling Map V. Emery, 1998

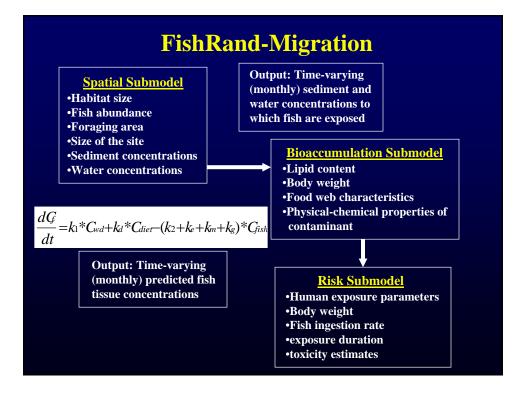
Clean-up Targets for Direct-Water Column Risks


- Exposures to dissolved or particulate-associated contaminant
 - Mediated through flux from the sediment bed
 - Chemical diffusion, groundwater advection, bioturbation, sediment resuspension and transport
 - A sensible cleanup target and remedy will match the exposure drivers to the management action
 - What is the exposure through the cap or after a sediment transport event?



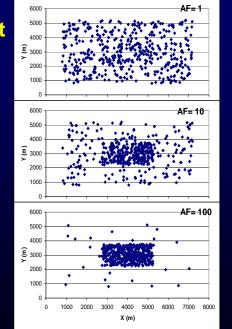

Clean-up Targets for Indirect-Food Web Risks

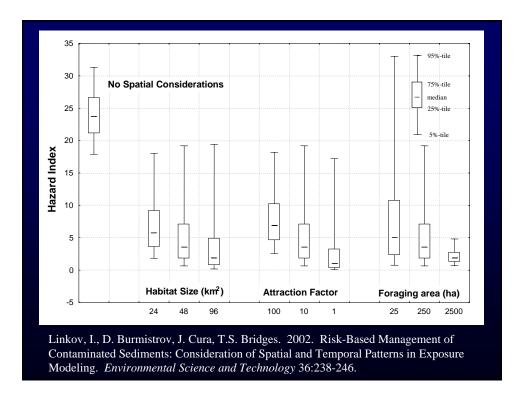
- Information to connect risks to the sediment
 - Field collected tissue
 - BSAFs, BAFs
 - Borrowed
 - Derived from site data
 - Bioaccumulation models
 - Steady-state
 - Time-varying

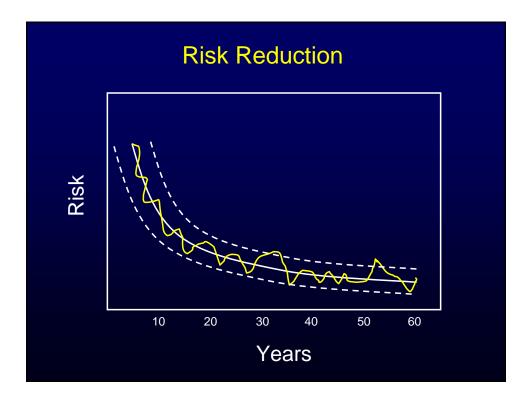


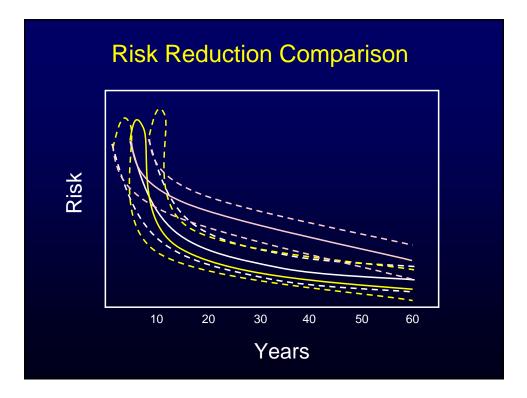
TrophicTrace

- Microsoft[®] Excel Add-In
- Estimate risks to fish, wildlife, humans
- Steady-state bioaccumulation model based on Gobas (1993 and 1995) for organics




- Uptake and trophic transfer of inorganics are modeled using empirical BCFs or Trophic Transfer Factors (TTF)
- www.wes.army.mil/el/dots




Spatial Issues in Exposure Assessment

- Most sites are relatively small and heterogeneous
- Fish mobility varies among species
 - Many recreational and commercial species range over large areas
- How to account for variable habitat quality and use within a site?

Tidal Wetland in South San Francisco Bay

- Arsenic and zinc in marsh surface and marsh slough sediments
- Upland areas are remediated
- Surface water and groundwater contained/controlled

Tidal Wetland in South San Francisco Bay

- Endangered species:
 - clapper rail, forages in sloughs (invertebrates and fish)
 - salt marsh harvest mouse, forages on marsh surface (pickleweed)
- Rare marsh habitat

Ecological Risk Results

- As and Zn concentrations in sediment and water are not routinely elevated above ambient levels or above levels of potential concern
- Population studies showed the marsh supports robust populations of plants, invertebrates, fish, birds and small mammals
- Hazard quotients over 1 predicted for both background and site-related concentrations (potential for impacts on individuals).

ERA Conclusions & FS Approach


- No population-level risks
- Could be some risk to individual T&E species
- Next step: develop cleanup levels and identify remedial action zones
- Conduct Habitat Equivalency Analysis (HEA) for compensatory restoration
- Approach: incorporate restoration (wetland offset) as alternative in FS and carry into ROD
- 6. Sensible targets must take into account implementability

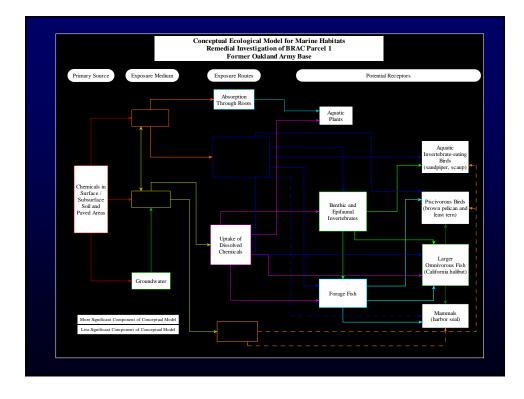
Estimation of Final Target Levels ((mg/kg dry weight)
-------------------------------------	--------------------

сос	Risk- Based Eco- threshold SMHM (low/high)	Risk- Based Eco- threshold CCR (low/high)	Max. Reference Marsh Conc.	Max. Reference Slough Conc.	SF Bay Ambient Level	Final Target Low Level (marsh/ slough)	Final Target High Level (marsh/ slough)
Arsenic	2.7/39	14/57	24	16	15	24/16	39
Zinc	197/8,430	23/227	201	107	158	201/158	227

Low targets are based on ambient/reference concentrations High targets are lowest of high risk-based thresholds

Remedial areas based on low value and by area (marsh vs. slough)

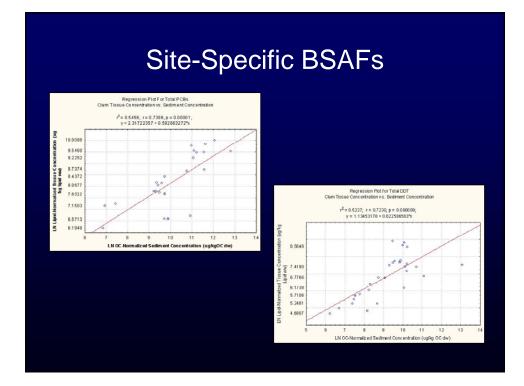
Feasibility Study Framework


- Other aspects that made RPM/trustees comfortable
 - Source removed/controlled
 - Surface sediment concentrations getting lower due to deposition (natural recovery)
 - Habitat of high value
- FS and ROD
 - Monitored NR (erosion monitoring)
 - Restoration (wetland offset) as part of remedy and incorporated into ROD

Compensatory Restoration in Lieu of Habitat Destruction

- Final acreage:
 - As marsh surface: 0.48 acres
 - Zn marsh surface: 0.40 acres
 - As sloughs: 0.02 acres
 - Zn sloughs 0 acres
 - Total acreage: 0.90 acres
- HEA showed roughly 0.7 acres owed (rounded to 1 acre for simplicity)

Oakland Army Base

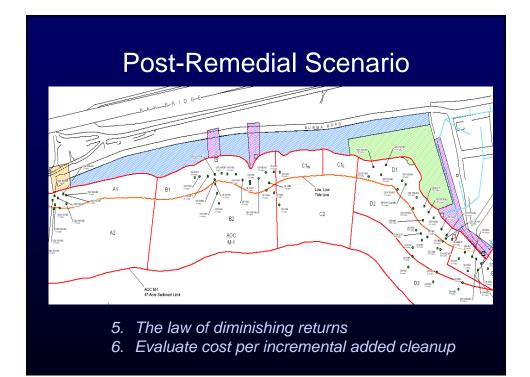

- Former landfill and historic discharge from stormwater outfalls
- Area of concern: marine sediments offshore of parcel
- Chemicals of concern: PCBs and DDT
- Species of interest:
 - Intertidal: sandpiper; forages on invertebrates, small home range
 - Subtidal: least tern, lesser scaup, and pelican; forage on invertebrates and fish, larger home ranges

Cleanup Levels: General Approach

- Developed for wildlife receptors but considered protective of all receptors.
- Risk drivers chosen based on exceedance of Low Risk-Based Level for marine receptors, consideration of ambient/background levels and uncertainties.
- The primary route of exposure for each receptor/risk driver used to develop the cleanup level.
- Site-specific bioaccumulation data were used .
- The lower estimates of foraging ranges were used.
- Average of the high and low intake rates were used.

Combined conservative & average assumptions

Final Cleanup Levels


- Targets developed for each receptor and risk driver:
 - High TRV used to develop High target
 - Low TRV used to develop Low target
- Moderate target = Geomean of High and Low
- For each chemical risk driver, the target for the receptor with the lowest targets (i.e., the highest risks) was selected as the final cleanup level

Final Step: Calculate Area-Weighted Concentrations

- Based on cleanup levels and technology limitations, remedial zones were developed
 - Agencies were comfortable with remedial approach
 - Agencies were uncomfortable with cleanup levels
- Pre-remediation concentrations and theoretical postremediation concentrations were calculated and compared
- Purpose: to see if planned remediation not only achieved CLs, but reduced average concentrations to ambient (since entire Bay is impaired for the COCs).

9. Engage stakeholders in the "target" development

Results

- Post-remediation concentrations were below SF Bay Ambient
- Next Steps
 - Frame cleanup levels and FS evaluation
 - Specify limitations on the use of the cleanup levels
 - Finalize the FS and begin Remedial Design
 - 1. Does it pass the RPM laugh test?

Conclusions

- Remember the "Top Ten Principles"
- Sensible targets are made in relation to a CSM and exposure pathways

- There is much room for improvement in how uncertainty is addressed in the process
- The specifics of the site will play a dominant role