Adaptive Management as a Measured Response to the Uncertainty Problem

John P. Connolly¹ and Mary P. Logan²

¹Quantitative Environmental Analysis, LLC
²USEPA, Region 5

Addressing Uncertainty and Managing Risk at Contaminated Sediment Sites
October 27, 2004 St. Louis, MO

Panel 4: Understanding and Managing Uncertainty in Assessment and Management

Acknowledgements

- Alcoa, Inc. for materials related to the Grasse River.
- Brookhaven National Laboratory (BNL) and the U.S. Department of Energy for materials related to the Peconic River.
- Young Chang and Doug Pocze, current U.S.EPA project managers for the Grasse and Peconic Rivers, respectively.
Authors’ Presentation Rules

- The views expressed are the authors’ own
 - Not EPA’s
 - Not necessarily any stakeholders from the case studies presented
- Authors are presenting ideas on which they reached consensus
 - Recognize that there are other opinions on how to deal with uncertainty at sediment sites

What is Adaptive Management?

- Learning by doing
- Structured approach to:
 - Address uncertainty
 - Make decisions in the face of uncertainty
 - Improve decisions in an iterative manner by acquiring knowledge to reduce uncertainty

Principles of Adaptive Management

- Adaptive management is a process that is **systematic** and **cyclical**
 - Provides a means to deal with uncertainty
 - Integrates existing knowledge to explore the management options and set goals
 - Involves careful **implementation** of a plan of action
 - Designed to get critical missing information

Principles of Adaptive Management (cont.)

- It actively compares policies and practices
 - Policy and management options are implemented experimentally
 - Actions are monitored
- Future decisions incorporate results/outcome
 - Reassessment of hypothesis and goals
 - Modification of policies and actions, as needed
- Negative or unexpected outcomes are not deemed “failures” – they are an expectation of the process and can be managed
History of Adaptive Management

- Concepts developed in the 1970s
- Started in resource management
 - Fisheries and forest harvesting
 - Habitat management
 - Restoration projects
- Evolving to take account of other factors
 - Land-use planning
 - Scale (temporal and spatial)
 - Societal concerns

Sediment Sites Have a High Degree of Uncertainty

- Processes affecting exposure levels and trends
 - Sediment stability
 - Internal and external sources
 - Bioavailability
 - Scales of exposure integration
 - Natural recovery processes
- Effectiveness of available remedial options
 - Ability to achieve desired outcome
 - Collateral impacts (habitat; short-term exposure increase, etc.)
- What is “best” for the site
 - Remedial goals
 - Basis and objectives of the response
Different perspectives of scientists and government decision makers can stall action or drive unnecessary action

<table>
<thead>
<tr>
<th>Science</th>
<th>Government</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability accepted</td>
<td>Certainty desired</td>
</tr>
<tr>
<td>Inequality is a fact</td>
<td>Equality desired</td>
</tr>
<tr>
<td>Anticipatory</td>
<td>Time ends at next election</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Rigidity</td>
</tr>
<tr>
<td>Problem oriented</td>
<td>Service oriented</td>
</tr>
<tr>
<td>Discovery oriented</td>
<td>Mission oriented</td>
</tr>
<tr>
<td>Failure and risk accepted</td>
<td>Failure and risk intolerable</td>
</tr>
<tr>
<td>Innovation prized</td>
<td>Innovation suspect</td>
</tr>
<tr>
<td>Replication essential for belief</td>
<td>Beliefs are situational</td>
</tr>
<tr>
<td>Clientele diffuse, diverse or not present</td>
<td>Clientele specific, immediate and insistent</td>
</tr>
</tbody>
</table>

If failure and risk are intolerable, scientific inquiry is corrupted and inaction is fostered

Case Study
Peconic River
Suffolk County, NY
Site Description

- Headwaters of the Peconic on BNL and flow ~18 miles to Peconic Bay
- Characteristics of the area of interest
 - ~ 7 miles downstream of BNL's sewage treatment plant (STP)
 - Flow on site is dominated by STP discharge
 - 5–120 feet wide, depending on hydrologic conditions
 - Less than 75 acres
 - ~ 50,000 - 100,000 CY of sediment
- Mercury is the primary contaminant of concern
 - Unacceptable risks primarily from fish consumption
- Runoff and historic discharges from the STP were the original source
 - Contaminants remaining in sediment are principal concern

Major Uncertainties that Hampered Decision-making

- Basis for action
 - Risks from fish consumption
 - Radiological risks
- Scope of cleanup
 - Mercury concentration targets
 - Areas to be remediated
 - Areas contributing methyl mercury
- Effects from the remedy
 - Concerns with wetland damage
 - Public desire to explore innovative approaches
Response to the Recognized Uncertainties

- Interaction/communication
 - EPA, NY State, Suffolk Co., DOE/BNL
 - Used a “Core Team” approach
 - Very active community
 - Constant outreach to community and groups
 - Public workshop to explore technologies
- Studies – Phased to respond to outstanding questions
 - Remedial Investigation (1998)
 - Plutonium/radionuclide characterization study (2000)
 - Additional fish, sediment and hydrologic studies (2001-2003)
 - Field studies of methyl mercury source areas (2003-2004)
 - Pre-design studies (2003-2004)

Response to the Recognized Uncertainties (cont.)

- Actions – Phased to make progress & get data
 - To control source
 - Construction of a temporary sediment trap (2001)
 - To prevent further off-site migration of contaminants
 - Pilot studies (2002)
 - 1360 yd³ and 1.4 acres
 - Evaluated phytoextraction; field tested vacuum guzzling and wetland restoration
 - 13,000 yd³ and 10.7 acres
 - Final remedy construction (planned 2005)
 - ~ 24,000 yd³ and 20 acres - total response
Case Study
Lower Grasse River
St. Lawrence County, NY
Site Description

- Grasse River flows > 100 miles from the Adirondacks to the St. Lawrence River
- Characteristics of the area of interest
 - Final ~ 7 miles – Massena Power Canal to confluence with St. Lawrence River
 - 400 - 600 feet wide
 - 405 acres
 - ~ 2,500,000 CY of sediment
- PCBs are the contaminant of concern
 - Unacceptable risks primarily from fish consumption
- Historic discharges through industrial plant outfalls were original source
 - Contaminants remaining in sediment are principal concern

Major Uncertainties that Hamper Decision-making

- System processes and the conceptual site model
 - Sediment stability
 - River ice processes
- Effectiveness of remedial options
 - Dredging residuals
 - Cap stability and effectiveness
 - Rate of natural recovery
- Scope of cleanup
 - Remedial goals
 - Decision criteria on where to apply different technologies
- Stakeholder positions on “best” approach
Response to the Recognized Uncertainties

- Interaction/communication
 - EPA, NY State, St. Regis Mohawk Tribe, Alcoa
 - Used a “technical team” approach
 - Active community advisory panel
 - Frequent meetings with advisory group
 - Outreach to the broader community
- Studies – Phased to get up-to-date information and respond to outstanding questions
 - Supplemental Remedial Studies (1995-ongoing)
 - River ice process investigations (2003-2004)

Response to the Recognized Uncertainties (cont.)

- Actions – Phased to make progress & get data
 - Source control (1991 – 2001)
 - Plant site cleanup
 - Modifications to wastewater treatment system
 - Non-time critical removal action (1995)
 - ~ 3,000 CY, 8,000 lbs. of PCBs
 - Capping Pilot Study (2001)
 - ~ 7.5 acres
 - Evaluated cap placement techniques and materials
 - Remedial Options Pilot Study (planned start 2005)
 - Dredging ~ 75,000 CY, 9 acres
 - Armored capping ~ 1 acres
 - Ice control structure
 - Final remedy selection (planned for future)
Case Studies – Common Elements that Help Lead to Success

- Communication between regulators, regulated and other government parties
 - Frequent exchange of information and opinions
 - Team approach
 - Not always pleasant, critically important
 - Willingness to listen to other viewpoints
- Public involvement
- Quality science
 - Sound conceptual site model
 - Ongoing collection of data linked to a clear objective
 - Appropriate technical expertise
Common Elements (cont.)

- Phased approach
 - Source control is critical
 - Implementation in small steps can help
- Uncertainty management → part of all actions
 - Provisions in early phases to revisit the actions as part of subsequent decisions
 - Requirements to measure during and post-construction conditions
 - To evaluate effectiveness
 - To establish expectations for next phases
 - Corrective action triggers established for work

Concluding Observations
Uncertainty will always exist – Decisions have to be made

No decision = Natural recovery

Managing Sediment Sites in the Face of Uncertainty

- Tradeoffs exist between continued study to reduce uncertainty and making a decision despite some uncertainty
 - Key issues must be faced:
 - Bang for the buck for continued study
 - Means by which uncertainty is handled in decision making
 - If consequences are manageable
 - If knowledge gained reduces uncertainty and improves ultimate outcome

- Managers need to confront the realities of risk and failure
 - Risk is unavoidable in the face of uncertainty
 - "Failure" may be OK
 - If consequences are manageable
 - If knowledge gained reduces uncertainty and improves ultimate outcome
Adaptive Management and Sediment Remediation

Adaptive management can overcome many of the impediments to effective management of contaminated sediment sites

- Reduce uncertainty
 - Scientifically compare approaches without the bias of a pre-conceived idea of what is “right” or “wrong”
 - Learn from implementation of actions

- Allow progress and improve future decisions through an iterative approach
- Provide a means to modify approaches if the outcome is not meeting desired goals

Adaptive Management and Sediment Remediation (cont.)

- It requires cooperation and commitment among the affected parties
 - Need to look for ways to build consensus
 - While it fits the regulatory framework, it may require a different decision paradigm from the regulators
 - May help prevent stalled or unnecessary action
 - Decision makers need to understand that there may not be one “best” answer for these sites
- It requires commitment to monitor outcomes and conduct additional work if needed to achieve the agreed upon long-term goals