Understanding and Managing Uncertainty in Sediment Contamination

Marc Greenberg – EPA
Terry Sullivan – BNL

Sources/Types of Uncertainty

- Analytical/empirical/metrical
- Temporal
- Modeling (CSM and mathematical)
- Biological including HHRA/ERA
- Inability to predict performance of chosen technology/remedial design—mechanical uncertainties
- Sediment stability issues
- Translational
- “Externalties”
Uncertainty Characterization & Analysis

- Monte Carlo analysis (1-D and 2-D)
- Probability Bounds analysis
- Fuzzy math
- Sensitivity analysis
- Failure modes and effects analysis
- Others:
 - Interval analysis
 - Bayesian methods

Options in Response to Uncertainty

- Reduce or minimize
 - Collect more data
 - Bench scale/Pilot/Demonstration studies
- Manage
 - Contingency planning
 - Phased approach
 - Adaptive management
 - Triad approach (systematic project planning, dynamic work strategies, real-time measurements—fosters field decisions)
Decisions

- We should expect uncertainty
- We should use quality science
- We should weigh the costs of understanding uncertainty vs. cost of implementing a selected remedy

At the end of the day, we have to make a decision

ISSUES

- Large uncertainty may lead to higher costs or may impede decision making.
- Risk Communication
 - Probabilistic results
- Stakeholder involvement is necessary for
 - setting sensible cleanup goals
 - Decisions within an adaptive management framework
ISSUES

- What drives uncertainty.
 - Site-specific.
 - Tools can help define key processes and parameters.

- Framework for incorporating uncertainty analysis into the decision process is needed.
 - Data requirements and partitioning of uncertain vs. variable parameters
 - Interpretation of results
 - Acceptance of results by stakeholders

Conclusions

- Uncertainty is – deal with it.
- Uncertainty is in all aspects of sediment remediation. Site characterization, risk assessment, setting sensible clean-up goals, remedial design, long-term monitoring and decision-making.
- We more often manage in the face of uncertainty more than we manage the uncertainty.
- More case studies needed where solutions were chosen using input from uncertainty analysis.
Adaptive Management

- Iterative or phased process of measurement and response to attain a goal
 - Metrics of project performance
 - Valued stakeholder concerns
- Response needed when measurements fall outside the “bounds of expectation”
 - Uncertainty analysis may be used to help set these bounds
- No single goal defines success or failure
- Changes in project design, in response to measures, are meant to steer the project towards the “expected trajectory of development” toward the remedial goal