

EPA's Program Expectations

- National Contingency Plan (NCP)
 - Broad, risk-based framework
 - EPA balances remedy selection between two opposing views
 - Full restoration → cost not a concern
 - Protect by controlling exposures \rightarrow cost important
 - EPA uses nine criteria to evaluate options
- 11-Principles policy
 - Stakeholder involvement
 - Scientific framework
 - Decision framework → risk management goals

Tradeoffs are Not Always Necessary

- Tradeoffs at sediment sites may not be necessary or useful when:
 - Stakeholders agree on the course of action
 - Science is clear
 - Outcome is reasonably certain
 - There are no choices of management options
 - The cost of assessing and resolving tradeoffs is high relative to the cost of the work

Some situations may be so critical that a response should be immediate

Tradeoffs in Sediment Management

- Study vs. Action
- Limitations of technology vs. risk based goals
- Cost vs. degree of protection
- Short-term impacts vs. long-term risk reduction
- Finality vs. long-term management

Study vs. Action

- Tradeoffs are made when extensive study is occurring vs. implementation of action
 - Basic needs are valid conceptual site model and good understanding of remedial options
- Questions to ask in balancing approaches:
 - How much information and best way to obtain?
 - Can approaches be combined for better outcome?
- Apply a consistent standard of review to information developed
 - Use a weight of evidence approach
 - Balanced treatment of all available data

- Studies conducted without being designed to answer a fundamental site question
- Study for decades with no progress
- Rushed decisions made without sound science
 Political, community, or other pressures
- Examples of effective balance of tradeoffs
 - A truly phased approach
 - Combine site progress with ability to get quality data
 - Information from first steps influence later steps

Limitations of Technology vs. Risk Based Goals

- Goals for sediment cleanups are sitespecific consistent with EPA risk based approach
 - Can result in differences between sites including numerical goals and media addressed (e.g. fish vs. sediment metrics)
- Goals at some sites may not be attainable with any technology
- A comprehensive review of technology effectiveness and risk reduction at completed sites is lacking
 - Analysis tends to be anecdotal
 - · Analysis does not always focus on key objectives

Cost vs. Degree of Protection

- Sediment remediation costs can be significant
 - Driven by the size of the project and technology chosen
- What is reasonable to pay for cleanup relative to the magnitude of the actual risk?
 - In view of degree of uncertainty with remedial outcomes
 - In view of degree of uncertainty in assessing current and expected future risks
- There may be large cost differences for similar expected outcomes
- There are fundamental differences of opinion on the appropriateness of institutional controls to control risk

- EPA's short/long-term effectiveness criteria better fit a model of a short construction period
 - Large sediment sites often involve lengthy cleanup
- The science needs to be improved to provide realistic assessments of risk and impacts
- All remedial options will have risk tradeoffs
 - Risks should be assessed against no action
 - Some options may transfer the risk
 - Risks may be manageable, but should be understood

Finality vs. Long-term Management

- All parties want closure
- Characteristics of complex sediment sites can make this difficult
 - Limits of technology, risk based goals, costs
- Need to consider ability to meet long term management needs
- Role of permanence
 - Relates to the potential for long-term risk
 - Does not necessarily equate to mass removal

Finality vs. Long-term Management (cont.)

- Examples of less effective balance of tradeoffs
 - Desire for "final" decisions may influence scope without adequate understanding of outcome
 - Lack of follow-up due to desire for finality
- Examples of effective balance of tradeoffs
 - Realistic assessment of relationship between remedial options and long term management needs
 - Flexible phased approaches that provide for modifications based on performance

Sound Science is Needed to Assess Tradeoffs

- Science needs to be advanced in fundamental areas to help future decision-making
 - System processes that affect risk and remedial outcomes
 - · Effectiveness and limitations of technologies
- Sound science can help assess tradeoffs
 - Fundamental to good decision making
 - Needs to be employed to support realistic assessments
 - What can be achieved from a risk reduction standpoint
 - Cost and consequences of various approaches

Balancing Tradeoffs

- Need to maintain focus on risk reduction as the goal for sediment cleanups
- All parties would benefit from a comprehensive assessment of what happened and why at past cleanups
 - Could provide information on:
 - Technology effectiveness
 - Risk reduction outcomes (short-term and long-term)
 - Cost (predicted vs. actual)

