Overview of Corps of Engineers Nearshore/Aquatic Placement Tools and Models

> Joseph Gailani Jarrell Smith

<section-header>GOAL• Develop a suite of models and tools to
represent sediment and constituent transport
due to dredging• Range from screening level to highly
complex, 3-D models• Includes research to understand and better
predict (model) sediment processes

Sediment and Dredging Processes

- Most dredged material is mixture of sand, silt and clay
- Behavior of these mixtures not as well understood as pure sand
- Dredging impact on sediment processes not well understood
- Ongoing DOER funded research in dredging and mixed sediment processes is supporting modeling
 - Mixed sediment erosion and transport
 - Dredging loss terms
 - Monitoring dredging and placement operations
 - Long-term dispersion and consolidation of dredged material

Three Tiers of Models

- Web-based screening level tools/models
- Process-specific, near-field models
 - STFATE
 - MDFATE
 - LTFATE
 - GTRAN
- Large domain, far-field models
 - SSFATE/PTM

Dredging Tools via Web

- Interactive tools related to dredging operations and sediment movement.
- www.wes.army.mil/el/dots/doer/tools.html

Ĭ

• This method is a quick considered a rough es detailed design.	DOER Tools ting the Terminal Fall Velocity o	<mark>nter Warning</mark> lts are isidered for a
	Parameter Limitations	
Parameter	Range	
Specific gravity of solid	0 to 3.0	
Sand size, D ₅₀	0.074 to 10 mm	
Sand size, D ₅₀ Depth of disposing vessel	0.074 to 10 mm 0 to 30 ft or 0 to 9 m	Input
		Input

Fall Velocity of		
Specific gravity of solid	Current velocity 20 © cm/sec © ft/sec	
Water © Salt (33 ppt) © Fresh	Water depth 20 © m © ft	
Median grain size (mm) .3	Draft of disposing vessel 4 © m © ft	
Water Temperature °C 20 💌		
Calculate or	Clear Form	
4		

Near-Field Model Interface

- Models depend on both field data and large domain hydrodynamic data
- SMS is the large-domain modeling interface for ERDC
- Includes multiple hydrodynamic, wave, and atmospheric models
- Incorporate near- and far-field dredging models into SMS while maintaining stand-alone versions.

ĨŦĨ

What is the SMS?

Surface-water Modeling System --- interface for:

- Grid generation and editing
- Model control file generation
- Input forcing functions (*Tide,* wind, waves, river flows)
- Model simulation
- Coordinate conversion
- Incorporate data fields
- Model simulation
- Model output visualization
- Report-quality graphics

STFATE Applications

- Provide initial deposition pattern from placement
- Provide water column concentrations for environmental purposes
- Guide field data collection
- Disposal site selection
- Manage disposal sites

Processes Represented

- Convective Descent controlled by gravity and momentum
- Dynamic Collapse bottom encounter or neutrally buoyant, horizontal spreading dominates
- Passive Transport Dispersion currents & turbulence dominate

Environmental Applications

- Section 103 of the Marine Protection Research and Sanctuary Act (Ocean Dumping)
- Section 404 (B)(1) of the Clean Water Act (Inland Dumping)
- Plume Generation and Transport Evaluations

Ĩ

Input Requirements

- Disposal site description
- Currents & density profile at disposal site
- Input/output/execution Controls
- Dredged material description
- Disposal operation
- Model coefficients

STFATE Software

http://el.erdc.usace.army.mil/dots/models.html

- Software older DOS Version
- New SMS version now available
- User's guide from Inland Testing Manual, also online
- POC Dr. Paul Schroeder (601) 634-3709
- Paul.R.Schroeder@erdc.usace.army.mil

MDFATE/ MPFATE

<u>Multiple Disposal Fate</u> of Dredged Material <u>Multiple Placement Fate</u> of Dredged Material

- Background
- Model Description
- Basic Model Input/Output
- Example Applications

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

MDFATE Background

- Developed for quantitative assessment of bathymetric changes resulting from multiple open water placements
- Includes consolidation, erosion, and avalanching
- New MPFATE also includes resulting accumulation of suspended material
- Utilizes modified versions of STFATE and LTFATE

Ĭ

MDFATE Description

- Provide final deposition pattern
 - conventional placement
 - capping or spreading placement
- Assess options for site selection
- Manage placement sites
 Impact of changes in placement operations
- Placement operations tool

Ĭ

MDFATE Description

- **STFATE processes** Only MPFATE includes water column calculation for mixing zone, tracer concentration etc.
- Avalanching due to mound slope instability
- **Consolidation** for cohesive sediments
- Long-term sediment migration/dispersion
 - due to waves & currents (non cohesive)

LTFATE Model Input

- Mound and local bathymetry (surveys, MDFATE)
- Hydrodynamic boundary conditions (time series of current velocity and direction
- Wave boundary conditions
- Sediment Properties
 - Grain size distribution
 - Cohesive erosion parameters
 - Settling velocity

LTFATE Model Output

- Mound migration/spreading
- Loss of material from local area (dispersion)
- Final mound bathymetry
- Final mound sediment composition
- Erosion depths
- Time-varying concentrations
- Sediment bed shear stress time history

LTFATE Model Application: LALB Harbor

- Mound bathymetry from MDFATE model
- Areas outside pit assumed to be 9 m depth
- Queen's Gate erosion algorithms and bulk density profiles incorporated into the model
- CH3D circulation model used to develop current and elevation boundary conditions
- Wave hindcast and shoaling used to develop local storm wave conditions

Ĭ

ĨH

- Import mound bathymetry from MDFATE model
- Develop mound bathymetry from data

	TABLE 1: Sto	rm Conditions of	selected test s	
Storm Date		Maximum Wave Height at CAD cell (m)	Maximum Wave Period (s)	Maximum Velocity at CAD cell (cm/s)
	4.4			
	4.1			
Т	ABLE 2: Storr	n induced erosior	n from CAD	cell
Storm Dat	e Maxi	mum erosion (m)	Avera	ge Erosion (1

LTFATE Model Results

- Estimate of mound migration
- Estimate of volume removed from mound
- Estimate volume re-deposited locally
- Estimate volume dispersed
- Multiple variation of possible storm conditions
- Multiple variations of sediment properties and mound configurations

LTFATE Model Results

- Estimate of mound migration
- Estimate of volume removed from mound
- Estimate volume redeposited locally
- Estimate volume dispersed
- Multiple variations of possible storm conditions
- Multiple variations of sediment properties

GTRAN Gridded TRANsport Model

Background

- Model Description
- Basic Model
 Input/Output
- Example Application

GTRAN Model Input

- Time series of current (hourly) over an entire domain
- Time series of wave conditions over an entire domain
- Domain Bathymetry
- Sediment Properties
 - Grain size distribution
 - Cohesive erosion parameters

GTRAN Model Output

- Transport directions and magnitudes at multiple locations on the domain
- Data interpreted to determine transport pathways and generalized transport directions

GTRAN Model Application: Savannah Harbor Entrance Channel

- Multibeam survey of entire ebb shoal region
- District plans to place dredged material in nearshore for littoral zone nourishment and barrier island stabilization
- Both cohesive and sandy dredged material
- Choose placement locations to optimize benefit to the barrier island and minimize material rehandling

ĨHĬ

GTRAN Model Application: Savannah Harbor Entrance Channel

 Move mixed material from channel to Berm 13/14
 Allow natural winnowing to remove fine content
 Longshore transport patterns will move sediment into sandstarved north Tybee littoral zone

SSFATE/PTM Capabilities

- Isolate and track specific sources of sediment (outfalls, dredging, prop-induced suspension, ...)
- Map sediment pathways (e.g. monitor movement of sediment from a specific source such as a dredge)
- Predict of sediment accretion and erosion zones
- Forecasting the potential negative impact of turbidity and deposition on WQ, beaches, SAV, spawning grounds, etc...
- Tracking and predicting contaminant and contaminated-sediment transport

SSFATE/PTM Capabilities

- Unstructured grid to permit modeling of complex regions
- Uses large-domain models for hydrodynamics and waves to drive the sediment particles, including settling and resuspension
- Multiple sediment classes simulated
- Define specific dredging process sediment sources (based on DOER-sponsored field and laboratory research efforts)
- 2-D, Quasi-3D, and 3D modes

