Dredging and Dredged Material Disposal Overview

Tab A2

Dr. Robert M. Engler Robert.m.engler@erdc.usace.army.mil

E2D2 KEYWORDS: Manual; Technical Framework

Basic Dredge Types

• Hydraulic

- Pipeline
- Hopper
- Mechanical
 - Clamshell
- Other/ Combinations

Factors in Selection of Dredging Equipment

- Physical characteristics of sediments
- Quantities to be dredged
- Dredging depth
- Distance to disposal area
- Physical environment of and between areas
- Contamination level of sediments
- Method of disposal
- Production required
- Types of dredges available

Clamshell or Bucket Dredge

Advantages of Mechanical Dredges

- Rugged and capable of removing hard packed materials
- Can remove debris
- Can work tight areas
- Efficient for disposal at long haul distances

Limitations of Mechanical Dredges

- Difficult to retain fine loose material in conventional buckets
- Production low compared to pipeline dredges
- Not recommended for contaminated sediments without controls

Advantages of Hopper Dredges

- Only dredge type for rough open water
- Can move quickly to job under its own power
- Does not interfere with other traffic
- Improves navigation depth quickly
- Economical for long haul distance

Limitations of Hopper Dredges

- Cannot work in shallow depths
- Cannot dredge continuously
- Excavates with less precision
- Economic load reduced with contaminated sediments
- Difficult dredging hard banks
- Difficulty dredging consolidated materials

Advantages of Cutterhead Pipeline Dredges

- Capable of excavating most types of materials
- Can pump directly to disposal sites
- Can dredge almost continuously
- Can dredge some rock types without blasting

Limitations of Cutterhead Pipeline Dredges

- Limited capability in rough open water
- Most are not self-propelled
- Difficulty with coarse sand in high currents
- Pipeline is an obstruction to navigation
- Debris and sediment can reduce efficiency

Dredged Material Disposal Alternatives

- Open Water Placement
 - -Ocean ~ Estuarine ~ Lakes ~ Rivers
- Confined Disposal Facilities (CDFs)

 diked containment
- Beneficial Use Applications

Planning Considerations

- Project Requirements
 - Volumes and frequency of dredging
 - Planning horizon
 - Stage of evaluation
- Material Characterization
 - Physical and Dredgability
 - Chemical/ Biological
- Regulatory or other constraints

Open Water Placement

- Site Characterization
- Site Designation/ Selection
- Material Suitability
- Design Evaluations
- Operational Considerations
- Control Measures/ Management Actions
- Monitoring
- Site Management Plan

Confined Disposal Facilities

- CDFs used because:
 - More economical for some projects
 - Most common option for material unsuitable for open water
- Regulated under CWA
 - discharge to US waters by definition
 - -404 permit
 - -401 State water quality certification

Confined Disposal Facilities

- Site characterization/ selection
- Engineering design
- Operational considerations
- Contaminant pathways and controls
- Long term management
- Monitoring

Beneficial Use (BU) Applications

- BU is alternative of first choice
- Needs and Opportunities
- Material Suitability
- Logistical Contraints
- Regulatory requirements vary
 - CWA/ MPRSA
 - Other

Regional Sediment Management (RSM) is an Approach that:

- Integrates management of projects/activities involving sand & other sediments within the context of coastal, river & estuarine systems
- Coordinates sediment management activities within a regional sediment system

Recognizes Sediment as a Resource

- Integral to economic and environmental vitality
- Consider the multiple inter-related resource needs and opportunities
- L Uses
 - knowledge about the sediment system as context for local project
 - decisions and consideration of long range implications
 - Partnerships across government levels and w/ private sector
 to balance objectives and leverage resources

Sediment Management Activities

- Actions that affect the *transport*, *erosion*, *removal*, and *deposition* of sediment in a region*; e.g.:
 - Dredging and placement
 - Structures that divert or trap sediment
 - Erosion protection structures or methods for riverbanks, shorelines, sea beds, and channel bottoms
 - Habitat stabilization and restoration
 - Sand and gravel mining for construction or other purposes
 - Other

*The Corps is involved in many of these

What is the "Region"?

- *First* defined in terms of sediment system
 - Includes the sediment sources, sinks and influencing features (e.g. jetties)
- Then, overlay geopolitical, regulatory and management jurisdictions.

RSM Integrates

- Corps projects & programs related to sediment
- Corps and other public and private projects/programs related by sediment system
- Sediment needs and opportunities as expressed by Federal and non-federal stakeholders

Support for RSM Approach

- Director of Civil Works endorsed -(CERB)
- CW Strategic Plan emphasizes
 "watershed" and "integrated approaches"
 RSM is an example
- National Dredging Team Action agenda – strengthen and accelerate RSM

