

ĨH

Contaminated Sediments Remediation

Tab V

Dr. Carlos Ruiz

Keywords: Remediation, Environmental Dredging, In situ Capping, Contaminated Sediments

Corps Perspective on Contaminted Sediments

- 150 years navigation dredging experience
- \$200M in applied research
- Regulatory agency for navigation
- Supporting agency for cleanup
- Responsible party for some projects
- The Corps has a unique perspective a vested interest in a balanced approach to management...

10 Principles for Effective Sediment Remedies

- 1. All decisions should be risk-based
- 2. Control sources

Ĩ

- 3. Set realistic RAOs, RGs, and CULs
- 4. Compare effectiveness of options on an equal footing
- 5. Evaluate Spatial and Temporal aspects of exposure
- 6. Tailor operations to achieve Short Term Effectiveness
- 7. Design for Long Term Effectiveness and Permanence
- 8. Develop site-specific, project-specific, and sediment specific remedies
- 9. Optimize effectiveness by combining options
- 10. Monitor to document effectiveness

first presented at EPA Forum May 2001

All decisions should be risk-based

- Risk reduction is the overall objective
- Baseline risk assessment
- Incremental risk reduction
- Present risk and future risk
- Comparative risk assessments for remedies

Control Sources

• Sources should be fully characterized

Ĩ

- Source controls should be considered the first component of the remedy
- Source control component should be in place prior to other components

Set realistic RAOs, RGs, and CULs

- Remedial Action Objectives (RAOs)
 - Specific to receptors
 - Example RAO Reduce cancer risk for fishermen
- Remediation Goals (RGs)
 - Tied to receptors and pathways
 - Example RG tissue level in benthic biota
- Cleanup levels (CULs)
 - Consider NCP Criteria (National Oil and Hazardous Substances Pollution Contingency Plan)
 - Example CUL sediment concentration in biologically active zone

Compare effectiveness of options on an equal footing

- A definite challenge
- All components of the remedy must be considered
- Evaluate effectiveness and permanence over comparable time periods
- Comparative Risk Assessment for Remedy Options

Evaluate spatial and temporal aspects of exposure

- Most sites have aerial and vertical COC gradients
- Consider background and proximate area
- Surficial sediment layers present on-going risk
- Risk is proportional to area of surficial contamination
- Deeper buried sediments present potential future risk
- Not all contamination can or should be remediated
- Contamination gradients change over time
- Risk is proportional to the time of exposure
- Dredging or capping "restarts the clock"

Tailor operations to achieve short-term effectiveness

- Capping
 - Resuspension
 - Mixing
 - Consolidation
- Dredging/ Treatment/ Disposal
 - Resuspension
 - Residuals
 - Disposal releases/ emissions

Design for long-term effectiveness and permanence

Accept short-term sacrifices for long-term gainsPlace in context with other on-going processes

• Capping

Ĩ

- Design to maintain CULs
- Erosion
- Seismic stability
- Groundwater flow
- Long-term diffusion

• Dredging and Disposal

- Target for mass removal or to achieve CULs
- Disposal site releases and emissions
- Permanence of controls
- Design for episodic events appropriately

Develop site-specific, project-specific, and sediment-specific remedies

- Project Specific
 - regulatory framework, volume, area, thickness, etc.
- Site Specific
 - water depth, hydrodynamics, climate, infrastructure, proximate resources
- Sediment Specific

 debris, physical/chemical properties, COCs
- One Size Does Not Fit All

Optimize effectiveness by combining options

- Combinations often most acceptable to all parties
- Combinations provide a balance of effectiveness and costs
- Combinations help offset disadvantages of respective single options
- Example
 - Dredging hotspots followed by thin capping of residuals
 - Capping of nearby mid-level contamination
 - Monitored Natural Recovery (MNR) for larger adjacent areas of low-level contamination

Monitor to document success

- Historically, few remedies have been adequately monitored
- Dredging
 - About 30 well documented projects
 - Effectiveness of the removal easy to document
 - Long time needed to confirm effectiveness for receptors
- Capping
 - Few capping remedies have been implemented
 - Long time required to confirm effectiveness
- Treatment
 - Limited projects of in-situ sediment treatment
 - Spatial and temporal effectiveness requires confirmation
- Deliberate effort needed to build a base of field experiences

Environmental Dredging Case Studies

- Black River, OH
- Ford Outfall/Raisin, MI
- Grasse River, NY
- GM/ Massena, NY
- N. Bedford Harbor, MA
- Marathon Battery, NY
- Manistique Harbor, MI
- Minamata Bay, Japan
- Lake Jarnsjon, Swdr

- Port of Portland, OR
- P of V Columbia R., OR
- PSNS Bremerton, WA
- Sitcum Waterway, WA
- Sheboygan River, WI
- W. Eagle Harbor, WA
- Waukegan Harbor, IL
- Fox River, WI
- Bayou Bonfouca, LA
- Collingwood Harbor, CN

Remediation Guidance

ARCS Remediation Guidance
 Document

http://www.epa.gov/glnpo/arcs/EPA-905-B94-003/EPA-905-B94-003.html

- EPA Superfund Sediment Guidance <u>http://www.epa.gov/superfund/resources/</u> <u>sediment/guidance.htm</u>
 - Draft Jan 2005/ FR Notice
 - RI/FS Considerations
 - MNR
 - In-Situ Capping
 - Treatment
 - Dredging and Excavation
 - Remedy Selection
 - Monitoring

Sediment Remediation Alternatives

- No Action
- Monitored Natural Recovery
- Environmental Dredging
- In-Situ Capping
- Engineered Monitored Natural Recovery
- In-Situ Treatment

Monitored Natural Recovery

- Advantages
 - Actions limited to monitoring and institutional controls
 - No disruption to waterbody
 - Cost Effective
- Disadvantages
 - Sediments remain in the aquatic environment
 - Processes act slowly
 - Subject to episodic storms, floods, etc.
 - Long term monitoring/ institutional controls required

Environmental Dredging

- Advantages
 - Mass removal
 - Proven technology
 - Easily implemented
- Disadvantages
 - Effectiveness reduced by resuspension and release
 - Effectiveness reduced by residual
 - Disposal is expensive

In-Situ Capping

• Advantages

- Easily to implement
- Containment in place
- Cost Effective
- Disadvantages
 - Emerging technology
 - Sediments remain in the aquatic environment
 - Water depths reduced
 - Subject to episodic storms, floods, etc.
 - Long term monitoring/ maintenance required

Engineered Natural Recovery

➤Thin layer placement

>Additives to enhance natural processes

Advantages

- No disruption to waterbody
- Cost Effective
- Disadvantages
 - Sediments remain in the aquatic environment
 - Processes are optimized
 - Subject to episodic storms, floods, etc.
 - Long term monitoring/ institutional controls required

Ϊнн

In-situ Sediment Treatment

• Advantages

ĨĦĬ

- Permanence
- Reduced toxicity, mobility and volume
- Potential reduction in cost and implementation time
- SARA preference
- Disadvantages
 - Technology unproven
 - Suitable only for low-level contamination
 - Short-term impacts of amendments
 - Time to achieve remediation goal and cleanup level

EEE Remedy Effectiveness – First things that come to mind

- Dredging
 - Can I get it all out?
 - Will I resuspend too much?
- Capping
 - Will it work?
 - Will it stay in place?
- Treatment
 - Will it work in place?
 - Is it timely?

GOOD QUESTIONS, BUT THERE'S MORE TO IT.

Navigation vs Environmental Dredging

- Navigation
 - Costs
 - Timeliness
 - Environmental Impact
- Remediation
 - Long-term Effectiveness
 - Short-term Environmental Impa
 - Costs

Considerations for Environmental Dredging

- Goal: Meet RAOs, RGs, and CULs
- Sediment Resuspension
- Contaminant Release
- Residual Sediment
- Production/Efficiency of Removal
- Precision/Horizontal and Vertical Tolerances
- Compatibility with Treatment and/or Disposal

Objectives, Goals, and Standards

- All cleanup decisions should be RISK-BASED
- Remedial Action Objectives (RAOs)
 - e.g., reduction in cancer risk to fish consumers
- Remediation Goals (RGs)
 - e.g, reduction in fish tissue concentrations
- Cleanup Levels (CULs) (set to achieve RGs and RAOs)
 - e.g., max or max normalized [COC] in surficial sediment
 - Tied to a surface area and surficial thickness, e.g. SWAC approaches, and dependent on method for confirmation

Remedial projects are designed to achieve CULs, and thereby <u>indirectly</u> RGs and RAOs.

Objectives, Goals, and Standards

Performance Standards may include or be based on:

- Mass removal (easy)
- Removal to elevation/ area (easy)
- Limits on surficial sediment concentration (difficult)
- Limits on resuspension (moderate)
- Limits on releases (moderate)
- Limitations on solids/ throughput (moderate)

Equipment Availability and Selection

- Mechanical vs. Hydraulic
- Conventional vs. Specialty
- Smaller sizes used compared to navigation for precision and compatibility
- Selection depends on a number of factors
 - Inherent capabilities of equipment
 - Site and sediment conditions

Specialty Dredges for Cleanup

Factors for Equipment Selection

- Production
- Percent solids
- Vertical Accuracy
- Horizontal Accuracy
- Max Dredging Depth
- Min Dredging Depth
- Sediment Resuspension
- Contaminant release control
- Residual/ Cleanup Levels

- Transport by pipeline
- Transport by barge
- Positioning Control
- Maneuverability
- Portability/Access
- Availability
- Debris/ Loose Rock/ Vegetation
- Hardpan/ Rock Bottom
- Flexibility for Varying Conditions
- Thin Lift/ Residual Removal

Production

- Production = removal rate, e.g. cy/hr
- Hydraulic production = f [Pumping capacity/ solids content; sediment density; effective dredging time]
- Mechanical production = f [Bucket size; effective bucket fill; cycle time; effective dredging time]
- Constraints on production

 Thickness of cut; control measures, access, etc.
- Constraints related to treatment/disposal capacity
- Sustained/ Effective Production rates for Environmental Dredging have been LOW.
- Most completed projects involved comparatively small volumes.

Removal Precision

- Efficiency = f [Production and Precision]
- Precision = removal of CS without removing clean material
 - Positioning only locates the dredgehead
 - Attainable precision now at +/- several inches
- Precision of positioning may outstrip that for sediment characterization

Sediment Resuspension

- Dislodged sediment dispersed to the water column and subject to plume transport
- All dredges resuspend sediment
- Models available for "source strength" and transport
- Field measurement methods are not consistent
- Field experience indicates resuspension generally less than 1% of the mass removed
- Place resuspension in context with other sources
- Resuspension is near field and can be controlled

Contaminant Release

- Resuspension results in releases
- Dissolved release to water column
 - Released porewater
 - Desorption from resuspended particles
- Volatile release from water to air
- Tests/models are available
- Dissolved and volatile releases subject to far field transport – need to evaluate risks accordingly
- Sediments can be removed without excessive release
- Releases can be controlled by limiting resuspension

Residual Sediment

- All dredges leave residual sediment
- No standard predictive method
- Field measurement methods are not consistent
- May be as large as 10 to 25% of volume dredged
- Multiple cleanup passes show diminishing returns; residual caps are a management option

Transport for Treatment/Disposal

- Transport distance
- Optimal water content for process train
- Transport must be compatible with treatment/disposal
- Hydraulic pipeline transport is inherent with removal (batch transport not efficient)
- Mechanical batch transport is another step in the process train, but reslurry/pipeline is possible.

Summary

- Evaluate risks Balance capabilities and limitations with environmental controls
- Suitable equipment is available
- Mass removal with acceptable precision is attainable
- Resuspension can be controlled
- Release is a far field problem evaluate risks
- Residual is a major issue for effectiveness and cost limit cleanup passes and allow for residual cap
- Dredging/transport must be compatible with treatment/disposal
- Detailed/comprehensive guidance on environmental dredging is lacking but under development

Technical Guidance for Environmental Dredging

- EPA Guidance (OERR)
- Environmental Dredging Processes
 - Removal
 - Residual
 - Resuspension
 - Release
- Removal Objectives and Targets
- Environmental Dredging Equipment and Techniques
- Operations, Sequencing, Management Units
- Pilot Studies
- Contracting Considerations
- Monitoring

Ϊн

Environmental Dredging Bottom Line

- No universal solution
- Conventional equipment can be used
- Specialty equipment is available
- All dredges will resuspend some sediment
- Resuspension can be predicted and controlled in most situations but at an increased cost to the project
- All decisions are inherently risk-based

Ĩ

In-Situ Capping

- Advantages
 - Easily to implement
 - Containment in place
 - Cost Effective
- Disadvantages
 - Emerging technology
 - Sediments remain in the aquatic environment
 - Water depths reduced
 - Subject to episodic storms, floods, etc.
 - Long term monitoring/ maintenance required

What's Important for Capping?

- Sediment/ Site Characteristics
- Project Design
 - Cap Design; Materials
- Placement Equipment and Methods
 - Mixing
 - Resuspension
 - Positioning
 - Site Controls
- Monitoring

Capping Issues

- Cap performance criteria
- Opportunities for active capping
- Controlled placement in thin layers
- Long-term containment of contaminants
- Erosion due to wind-driven waves or stream flow
- Ice scour
- Influence of habitat on cap performance (SAV or bioturbation)
- Ground water upwelling
- Gas ebullition
- Mobilization of NAPL
- Sediment slope stability
- Incorporation of habitat values into cap design

Capping Materials

- Granular materials
 - sediments
 - soils
 - quarry run materials
- Amendments
 - Adsorbents
 - Reactants
- Fabrics and membranes
- Armor stone

Site Conditions/Boundaries

- Water depths
- Bathymetry
- Hydrodynamics
- Geotechnical
- Biological
- Jurisdictional
- Operational

Laboratory Testing and Modeling for Cap Effectiveness

- Extension of the RECOVERY model (USACE contaminated sediment-water interaction model)
- Couples consolidation predictions by the PSDDF model with contaminant transport (PSDDF is USACE dredged material consolidation model)
- Addresses short-term advection and long-term diffusion of contaminants
- Assumes reversible linear equilibrium sorption and first order decay kinetics

Cap Placement Methods

- Barge
 - conventional spreading pumpout
- Hopper

 conventional spreading- pumpout
- Pipeline – diffuser - sand box - baffle plate
- Direct mechanical placement
- Other innovative methods

Cap Placement by Hopper, NY Mud Dump

In-Situ Management with Capping

- Sand caps easy to place and effective
 - Contain sediment
 - Retard contaminant migration
 - Physically separate organisms from contamination
- Greater effectiveness possible with "active" caps
 - Encourage fate processes such as sequestration or degradation of contaminants beneath cap
 - Discourage recontamination of cap
 - Encourage degradation to eliminate negative consequences of subsequent cap loss
- Potential for habitat development

Potential Amendments to Reduce Bioavailability

- Aquablok
 - Control of seepage and advective contaminant transport
- Coke
 - Encourages sorption-related retardation
- Activated Carbon
 - Encourages sorption-related retardation and sequestration
- Organoclay sorbent
 - Encourages sorption-related retardation
- XAD-2/Ambersorb
 - Encourages sorption-related retardation and sequestration

Potential Amendments to Reduce Bioavailability

- Phosphate mineral (Apatite)
 - Encourages sorption and reaction of metals
- Zero-valent iron
 - Encourages dechlorination and metal reduction
- BionSoil
 - Encourage degradation of organic contaminants
- High value materials can be placed in laminated mat

Cap Thicknesses					
Cap	Target	Observed			
	Thickness -in	$in\pm\sigma$			
Sand	12	8.9±3.2			
Aquablok	4	4.5±2.0			
Sand	6	5.3±1.8			
Apatite	6	4.9±1.2			
Sand	6	4.5±1.2			
Coke	1	1 (mat)			
Sand	6				

Gas Release in Anacostia

Monitored Engineered Recovery

Capping Guidance Documents

- ARCS In-Situ Capping Guidance EPA 905-B96-004 Oct 96
 - http://www.epa.gov/glnpo/arcs/EPA-905-B94-003/EPA-905-B94-003-toc.html
- USACE Guidance for Subaqueous Dredged Material Capping Jun 98
 - http://el.erdc.usace.army.mil/dots/doer/pdf/ trdoer1.pdf

Take Home Message

- Caps must be engineered
- Caps can be effective containment options
- Reactive caps can reduce isolation requirements

In-situ Sediment Treatment

- Abiotic Degradation
- Sequestration

- Reactive Caps
- Bioremediation
- Phytoremediation

In-situ Treatment Technologies

Technology	Maturity	Treatment Locale	Cost	Challenges
Abiotic Degradation	Lab	Delivery Depth	High	Delivery, % Removal
Sequestration	Lab	Delivery Depth	Med	Delivery, Permanence
Reactive Caps	Demo	Surface Flux	Low	Permanence, Effectiveness
Bioremediation	Lab	Delivery Depth	Med	Delivery, % Removal
Phytoremediation	Demo	Shallow Waters	Low	% Removal

In-situ Sediment Treatment

- Add nutrients to accelerate biodegradation
- Add chemical to convert contaminants to less toxic form
- Add solidification / stabilization agents to reduce sediment and contaminant mobility

ĨH

Take Home Message

- Evaluate options on a comparable basis
- Balance costs vs. degree of environmental protection
- Combinations of options often most efficient
- Solutions are
 - Project specific
 - Site specific
 - Sediment specific