Savannah Harbor Beneficial Use Study

Joseph Gailani, Jarrell Smith
Bruce Ebersole, Carl Miller, Layla Raad
U.S. Army Corps of Engineers
Engineer Research and Development Center

Project Specific Sediment Management

Past and present practice isolates sediment from the littoral/beach system
Regional Sediment Management

RSM considers dredged material as a resource to benefit the region. How can we best use the material to mitigate erosion on north Tybee?

Maintenance material is generally not beach quality.

Savannah Nearshore Placement Study Issues:

- Benefits to Tybee Island littoral system?
- Negative impacts to Tybee Island shoreline?
- Minimize sediment rehandling
- Nearshore turbidity
- Identify optimal placement locations and orientation for nearshore placement.
Savannah Nearshore Placement Study Methods:

- Collect appropriate data at Savannah
- Model hydrodynamics, waves and sediment transport at Savannah
- Improve and increase confidence in Savannah predictions by validating methods and models at Brunswick.
 - Collect nearshore mound migration data
 - Model same processes at Brunswick

Attachment Bar 1854
Understanding Transport of Mixed Dredged Material:

- Savannah dredged material will be more resistant to erosion than pure sand due to cohesive forces
- Site-specific erosion tests on dredged material
- Incorporate critical shear stress for erosion and erosion rates into GTRAN
Wave Model Grids

Parent Grid
36 km x 67 km
dx: 200 m

Nested Grid
15 km x 30 km
dx: 50 m

Water Level Influence on Wave Transformation

Low Tide
High Tide
Nearshore Placement Scenarios

Crest Elevation

Berm 01: 2.1 m
Berm 02: 2.1 m
Berm 03: 3.0 m
Berm 04: 4.0 m
Berm 05: 4.0 m
Berm 06: 3.5 m
Berm 07: 2.5 m
Berm 08: 1.5 m
Berm 09: 2.5 m
Berm 12: 3.0 m
Berm 13: 2.0 m
Berm 14: 2.0 m

Transport direction and magnitude
Transport direction and magnitude

U.S. Army Corps of Engineers
Engineer Research and Development Center

Effect of Nearshore Placement on Waves and Longshore Transport

- Nearshore bathymetric relief influences wave transformation
- Changes in transformation influence longshore transport
- Longshore transport affects shoreline change

U.S. Army Corps of Engineers
Engineer Research and Development Center
Wave Focusing by Nearshore Berms

Wave Direction

Lower Waves

Higher Waves

Submerged Shoal

Wave Focusing at Nearshore Berm 01

Low Tide

Mid Tide

High Tide
Conclusions

- Offshore or channel adjacent placement will not benefit Tybee shoreline
- Berms placed closer to shore more likely to provide sand to Tybee shoreline and nearshore platform
- Nearshore berm location is critical in maximizing nourishment and minimizing rehandling
- Transport patterns remove sediment from north Tybee nearshore platform
Recommendations

- Move mixed material from channel to Berm 13/14
- Allow natural winnowing to remove fine content
- Longshore transport patterns will move sediment into sand-starved north Tybee littoral zone

Validation

- New models developed from verified theories applied to nearshore berm placement at Savannah
- Opportunity to validate and improve new models applied at Savannah by monitoring ongoing nearshore placement at Brunswick
- Model validation is critical to improve and increase confidence in the Savannah nearshore placement results
Nearshore Placement at Brunswick
Main Issues

• Rate and direction of mound migration
• Does sand-sized material re-enter the littoral system or the channel?
• Do fines deposit in the nearshore area?
• Do numerical models of dredging process and sediment transport models accurately represent nature?
Fate of Sediment
Field Techniques

Sediment Tracer
(Feb – Aug 2003)
- Sand
- Fines (Silt and Clay)

Instrumentation
- Currents
- Roving Survey
- Waves
- Suspended Sediment

Bathymetric Surveys
(Feb, Apr, Jul 2003)
- Survey Bounds

Sediment Sampling
(Feb, Apr, Jul 2003)
- Grab and Core Samples

Mounds B & C

- Disposal method results in annular (donut-shaped) mounds
- Analysis
 - Mound relief at similar scale as natural (?) features
 - Mound evolution (Feb-July)
 - Mound evolution consistent with tracer movements
 - Backscatter (sediment sorting)
Morphology of Mound C

ADCIRC: Calibration to currents
Results of ADCP current profile analysis behind Mound C

Present BL Approach

With BL Separation

Tidal Currents

Tidal Currents

Potential Effect of Vertical Structure on Mound Evolution

Present BL Approach

With BL Separation

Tidal Currents

Tidal Currents

Near-bed currents in the lee of the mound tend to transport sediments away. Result is a more dispersive mound.

Near-bed currents in the lee of the mound are toward the mound crest. Result is a less dispersive mound.
Summary: Current profiles

- Significant structure exists in the vertical current profiles near the navigation channel and dredged material mounds.
- Spatial variance exists in the profiles and appears to be associated with gradients in the bathymetry.
- Three-dimensional structure of currents may be important in the evolution and dispersion of the mounds.

High-Resolution Bathymetry

- 3 sets of high-resolution bathymetry covering large area (27 km², 10 mi², or 6600 acres)

 Analysis and Data Use
 - Provides best available bathymetry for numerical models
 - Accurate enough for detailed volume-change analysis
 - Supplementary data for tracer analysis
Summary: Preliminary analysis of survey and tracer data

- Surveys and tracer movement indicate net migration of mound to the SSW.
- Acoustic backscatter and cores suggest winnowing of sediments.

Sand Tracer Movement (Feb – June 2003)

- Flood-dominant transport at nearshore mound
- Ebb-dominant transport with longshore current influence at offshore mound
Other Tracer Study Observations

- Silt tracer
 - disperses rapidly.
 - Small amount temporarily found in nearshore
 - At end of study, majority of silt tracer unaccounted for (deep burial or transport outside study area)

- Sand tracer
 - Transported rapidly from mound crest
 - Majority of sand tracer mass buried in migrating mound
 - Tracer movement consistent with bathymetric surveys

Modeling at Brunswick

- Modeling is ongoing
- Hydrodynamic and wave model results compare well to field data
- Hydrodynamics is very similar to Savannah
- Preliminary sediment transport modeling results are consistent with field data
- BL separation has a significant impact on transport at Mound C