

# Environmental Windows as a Resource Protection Management Practice



#### **DOUG CLARKE**

US Army Engineer Research and Development Center

### **Topics for Discussion**

- 1. How do environmental windows affect project planning and work schedules?
- 2. Do environmental windows provide optimal conservation benefits?
- 3. In what cases would monitoring provide more benefit than environmental windows?

**Environmental Window** - a period during which dredging may occur

**Seasonal Restriction** - a period during which dredging is not allowed

# **Chronology of Windows**

- First appeared after passage of NEPA in 1969
- By 1980 > 80% of all Federal navigation projects complied with at least one window
- By 1996 > 90% of Federal projects were restricted, a majority by *multiple windows*
- The %age of restricted projects continues to rise in response to an expanding emphasis on environmental mandates such as *the ESA and EFH*

# Frequency of Windows by Region (1996)



### LAKE MICHIGAN WINDOWS

| PROJECT             | D'ANN | FEB | MAR | APR | MAY   | אוט ב | Jaor | DUA  | SEP   | OCT | NOV | DBC           |
|---------------------|-------|-----|-----|-----|-------|-------|------|------|-------|-----|-----|---------------|
| ARCADIA             |       |     |     |     |       |       |      |      | 24    |     |     | in the second |
| CHARLEVOIX          | -     |     |     | 31  | 1 15  |       |      | 45   | 1     | 1   | Î.  |               |
| FRANKFORT           |       |     |     | 31  | 15    |       |      | 15-  | 1.16  |     | 1   |               |
| GREILICEVILLE       | -     |     |     | 31  | 1 15  |       |      |      | - 15  | 1   | 1   | 1             |
| GRAND HAVEN (INNER) |       |     |     |     | 15    | 8     | )    | 1    | 1     | 1   |     |               |
| GRAND HAVEN (OUTER) |       |     |     |     | - 15- | 1     | 1    | -    | 1     | 1   | -   |               |
| GRAYS REEF PASSAGE  |       |     |     | 31  | 1.    | 1     | 1    |      |       |     | .31 |               |
| HOLLAND (INNER)     |       |     | -   |     | 15    |       | )    | 1    | 1     | 1   |     |               |
| HOLLAND (OUTER)     |       |     |     |     | - 15- | 1     | 1    | )    | 1     | 1   |     |               |
| LITTLE BAY DE NCC   |       |     |     | 31  | 1     | 1     |      |      | - 15- | 1   | 1   |               |
| LELAND              |       |     |     |     |       | 1.    | 1    | 1    | 1     | 1   | 1   |               |
| LUDINGTON           |       |     |     | 31  | 15    |       |      |      |       | 1   | 1   | 1             |
| MANISTEE            |       |     |     | 31  | 1     |       |      | -15- |       | 1   | 1   | 1             |
| MANISTIQUE          |       |     |     | 31  | 1     | 15    |      |      | 31    |     | 1   | 1             |
| MENOMINEE           |       |     |     | 31  | 1     | 15    |      |      | 31    | )   | 1   |               |
| MUSKEGON            |       |     |     | 31  | 1     |       |      |      |       | 1   | 1   | 5             |
| NEW BUFFALO         |       |     | 28- |     | 15    |       | 30   | )    | 1     | 1   |     |               |
| PENTWATER           | -     |     |     | 31  | 1     | +-15- | 1    | 1    |       | 1   | 1   |               |
| PETOBKEY            |       |     |     | 31  | 1     |       |      |      | 31    |     | 1   |               |
| PORTAGE LAKE        |       |     |     | 31  | 1     |       |      |      | + 15- |     | 1   |               |
| BAUGATUCK           |       |     |     | 31  | 1     | )     | 1    |      | 31    |     |     |               |
| SOUTH HAVEN         | -     |     | 28  | 1   | 1     | Ĩ.    | 1    |      | 31    | 1   | _1  |               |
| ST JAMES            |       |     |     | -   | - 15- |       | 1    | 1-   |       |     |     |               |
| ST JOSEPH (INNER)   | -     |     | 28  | 1   |       |       | 30-  |      | )     | 1   | 1   |               |
| ST JOSEPH (OUTER)   | -     |     | 28  | 1   |       |       | 30-  | 1    | 1     | 1   | 1   | 1             |
| WHITE LAKE          |       |     |     | 31  | 1 1   | 1     |      |      | + 15- |     | 1   | -1            |

### LAKE MICHIGAN WINDOWS

| PROJECT             | JAN | FEB | MAR | APR | MAY  | JUN        | JOL | AUG   | SEP   | OCT | NOV | DBC |
|---------------------|-----|-----|-----|-----|------|------------|-----|-------|-------|-----|-----|-----|
| ARCADIA             |     |     |     | 21  |      | 12         |     |       | 21    |     |     |     |
| CHARLEVOIX          |     |     |     | 31  | 1 15 |            |     | 45    |       | 1   | 1   |     |
| FRANKFORT           |     |     |     | 31  | 15   |            |     | - 15- | 1.15  |     | 1   |     |
| GREILICEVILLE       |     |     |     | 31  | 1 15 |            |     |       | - 15  | 1   | 1   |     |
| GRAND HAVEN (INNER) |     |     |     |     | 15   | 8          | )   | 1     | 1     | 1   |     |     |
| GRAND HAVEN (OUTER) |     |     |     | 24  | - 15 | 1          | 1   |       | )     | 1   |     |     |
| GRAYS REEF PASSAGE  |     |     |     | 31  | 1 15 | 1          | 15  |       | -     |     | 1   |     |
| HOLLAND (INNER)     |     |     |     |     | 15   |            | )   | 1     | 1     | 1   |     |     |
| HOLLAND (OUTER)     |     |     |     | 24  | 15   | 1          | 1   | 1     | 1.    | 1   |     |     |
| LITTLE BAY DE NOC   |     |     |     | 31  | 1    |            |     |       | -15-  | 1   | 1   |     |
| LELAND              |     |     |     | 24  |      | 1 <u> </u> |     | 1.0   | 1     | 1   | 1   |     |
| LUDINGTON           |     |     |     | 31  | 15   |            |     | - 15- |       | )   | 1   |     |
| MANISTEE            |     |     |     | 31  | 1    | 1          |     | -15   |       | 1   | 1   |     |
| MANISTIQUE          |     |     |     | 31  | 1    | 15         |     |       | 31    |     | 1   |     |
| MENOMINEE           |     |     |     | 31  | 1    | 15         |     | 15    | 31    |     | 1   |     |
| MUSKEGON            |     |     |     | 31  | 1 15 |            |     | 15    |       | 1   |     |     |
| NEW BUFFALO         |     |     | î.  | -   | 15   | 15         |     |       | 1     | (   |     |     |
| PENTWATER           |     |     |     | 31  |      | 1-15-      | 1   | 1     | 1     | 1   | 1   |     |
| PETOBREY            |     |     |     | 31  | 1    |            |     |       | 1.15  |     | 1   |     |
| PORTAGE LAKE        |     |     |     | 31  | 1    |            |     |       | - 15  |     | 1   |     |
| BAUGATUCK           |     |     |     | 31  | 1    | 1          | -   |       | 31    |     |     |     |
| SOUTH HAVEN         |     |     | °.  | 1   | 1    | 1          |     | 1     |       |     |     |     |
| ST JAMES            |     |     |     |     | 15   |            |     |       |       |     |     |     |
| ST JOSEPH (INNER)   |     |     |     |     |      |            | 20  |       | )     | 1   | 1   |     |
| ST JOSEPH (OUTER)   |     |     | 8   | 21  |      |            | 30- | 1     | 1.15  | 1   | 1   |     |
| MUTTE LAPP          |     |     |     | 31- |      | 1          |     |       | - 15- |     | 1   |     |

# **Environmental Windows in Chesapeake Bay**



# **Environmental Windows in Chesapeake Bay**





# **Issues That Lead to Windows**

- Contaminated Sediments
- Sediment re-suspension effects

   Turbidity
  - Total Suspended Solids
- Hydraulic entrainment
- Sedimentation effects
- Noise
- T&E species protection

### **CUMULATIVE WINDOWS** EXAMPLE: HYANNIS HARBOR, MA PROJECT FILE

RESTRICTION Winter Flounder **Anadromous Fish Shorebird Nesting Bathing & Boating Shellfish Spawning Sea Turtles WINDOW** 



The Problem from a Dredging Project Manager's Perspective
• Windows have a "cumulative effect"



# **Consequences of Environmental Windows**

- Protracted project schedules and delays
- Rising costs per cubic yard of sediment dredged

 Contentious coordination pitting the need to dredge against the *Precautionary Principle*

# The Precautionary Principle

- When an activity raises threats of harm to human health or the environment, precautionary measures should be taken even if some cause-and-effect relationships are not fully established scientifically.

(from the 1998 Wingspread Statement)

### **The Precautionary Principle in Practice**

- The PP is intended to be a *risk-averse* and ideally an *adaptive* management practice
- Under the PP precautions are intended to be *preliminary* measures pending completion of risk assessment
- Precautions are *not an endpoint*, but a *starting point* in a search for alternatives
- "The litmus test for knowing when to apply the PP is the combination of *threat of harm and scientific uncertainty*" (Tickner, 1999)

### PROPORTIONALITY: THE APPLIED PRECAUTION SHOULD BE PROPORTIONAL TO THE DEGREE OF RISK



#### **PRECAUTION** CONCERNS RELATED TO TURBIDITY

An environmental window is an off switch, not a dimmer switch. By default it infers that no risk is acceptable.

#### **Research obstacles:** Sea Turtle Entrainment Example



- Major investment in research resulted in greatly reduced "take" by hydraulic dredges
- Reduced "take" did not lead to more flexible windows
- New dragarm and deflector designs would be extremely expensive to plan, evaluate, and implement
- Extensive interagency coordination and collaboration required to demonstrate that dredging outside of the existing windows can be done without additional "take"

### **ONE CONSEQUENCE OF 35 YEARS OF ENVIRONMENTAL WINDOWS:**

Stagnation in the search for better, safer ways to conduct dredging while protecting environmental resources.

### **OBTAINING EXEMPTIONS FROM EXISTING WINDOWS TO ASSESS IMPACTS IS OFTEN A CHALLENGE**

# Informed Decisions Demand an Integrated Approach

- Biology
- Life history stage
- Habitat
- Seasonality
- Vulnerability

- Dredging
- Type
- Performance
- Waterway
- Temporal/Spatial Scales

# **National Research Council**



# A Process for Setting, Managing, and Monitoring Environmental Windows



# **Pitfalls in the Present System**

- Burden of proof lies on the dredging community, but targets are fuzzy
- Often weak documentation
- Few resource agencies have staff dedicated to the dredging process
- Resource agencies have no funds for dredging research or training
- Little incentive exists to change the status quo

### Recommendations

- Consider all best management practices on an equal basis with windows (e.g., silt curtains, closed buckets, buffer zones, etc.)
  - Accept windows as a potentially useful tool based on the merits of a given project and specific sources of risk
  - Do not institutionalize windows, but invest in development of alternatives

# Recommendations

- Seek science-based, adaptive approaches
- Obtain commitments to resolve major concerns
- Explore ecological risk-based methodologies to set windows
- Train regulators in the dredging process
- Increase awareness of conservation needs among dredgers

# In Conclusion:

- Environmental windows are a nonadaptive management practice and represent an imperfect application of the precautionary principle
- Progress beyond a perfunctory acceptance of windows as the management practice of first resort requires commitment from all stakeholders

# DREDGED SEDIMENT IS JUST THAT

- SEDIMENT -

NOT SPOIL

### **Topics for Discussion**

- 1. How do environmental windows affect project planning and work schedules?
- 2. Do environmental windows provide optimal conservation benefits?
- 3. In what cases would monitoring provide more benefit than environmental windows?