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Trees have been around for about 350
million years during which time they
have had a significant impact on
landscape evolution and sedimentary

geology.



Historic changes have occurred in forest
distribution but in the characteristics of
iIndividual trees.

Humans have reduced forest cover from
about 35% to about 12%. Similar to the
exploitation of other biologic resources
(e.g., fisheries), many forests are
characterized by younger, smaller trees.



Most Current riparian forests bear little if any resemblance to their historic conditions:
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Riviere des Moustiques Mapou Tree, Haiti
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States of Local Streams



Root cohesion and
roughness in Manoa Stream
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Manoa Stream, O’ahu 5-19-08




Loss of vegetation and
sediment input, right bank of
Manoa Stream

Manoa Stream, O’ahu 5-19-08



Waimalu Stream, O’ahu 5-19-08




Waimalu Stream, O’ahu 5-19-08




Waimalu Stream, O’ahu 5-19-08




Halawa Stream, O’ahu 5-19-08



Some basic fluid
mechanics



Velocity and Roughness

T, = ku? Chezy (1769) assumption - bed shear stress
proportional to the square of velocity (kisa
proportionality constant)

u? = pg/k (RS) substitute for t, and R

C = (pg/k)’> Chezy Friction Coefficient
u=C(RS)%> Chezy Equation

C=RVY%/n empirical relation (Manning 1889)
u=k,R?3 S1”2/n Manning’s Equation

Manning’s n reflects the net effects of all variables
contributing to flow resistance.



Shear Stress Partitioning

The force available to transport sediment is that component not
dissipated by roughness.

T, grain roughness

T¢ bedform roughness
Tyi  Other sources(wood, bends, constriction,
vegetation, etc.)
Y —

where 1T’ 1s the force available to do work (sediment transport,
bank erosion, etc.). Losses can be up to 90% in rough channels.



LWD covering less than 2% of
the streambed can provide 50%
of the total roughness or flow
resistance. This results in a finer
streambed substrate.

Buffington and Montgomery 1999, WRR 36, 3507-3521
Manga and Kirchner, 2000, WRR 36, 2373-2379.



Rough shoreline:

High velocity flowline is offset by boundary roughness
provided by woody vegetation, reducing shear stress
along the channel shoreline.



Natural Bank Roughening

Chilkat River, Klukwan, Alaska



Root Cohesion



Trees:

-add cohesion to bank materials
-lower pore pressures by ET
-increase roughness

-add surcharge

-armor unconsolidated banks

Coal Creek, WA 08-02
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Influence of roughness
on river stage

Brummer, Abbe and others 2006



Hypothesis for collapse of beach spawning habitat

Wood

\

Boundary conditions of river draining lake

In-stream flows and river stage
e

T ) ! =SSR T
[ —— g & — a® -
LT A R R T e
P e —
——

am
o —

e

e

' A —
— e
¢ [



Increasing channel & bank
roughness reduces flood
wave celerity & increases
diffusion. Reduced
conveyance thereby
increasing water elevations,
but in downstream reaches
this is moderated by
reduced discharges.




head differential (feet)
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Head differential due to wood accumulation in Deschutes River, WA
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dH/bkf depth
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Lake Ctastte Stage (ft)
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32
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Model Results

Flow Duration
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Model Results

Mean Lake Level (ft)
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Influence of vegetation on
bank erosion
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“View on the Missouri, Alluvial Banks Falling in, 600 Miles above St. Louis”
George Catlin, 1832. National Museum of American Art, Smithsonian Institution.
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Central Sacramento River channel migration rates

(Agricultural erosion rates) = 2 * (Forest erosion rates)
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Micheli, E.R., J.W. Kirschner, and E.W. Larsen 2003. Quantifying the effect of riparian

forest versus agricultural vegetation on river meander migrations rates, Central Sacramento River,
California, USA. River Research and Applications. 19. 1-12.



Normalized Eroded Areas

by Riparian Vegetation Type
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Vegetation influences fluvial ecosystems
across multiple scales

<€ >
cm km
substrate & cover Bedforms & gradients planform & floodplain
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Patterns of wood
accumulation
throughout a basin




Bar Apex Jam, Allyn River, New South Wales, Australia






Removing wood reverses the morphologic complexity
created by wood and simplifies rivers.

/710 /946

Pipnirm CHANGES TN THE WILLAMETTE RIVER, OREGON Fiom 185%-/%E#
(From Sedll ad Frogatt, H:&D




Human development has dramatically reduced the size and quantity of wood
debris. The result is a significant change in channel geomorphology.




Sediment discharge
resulting from
channel clearing

Consequences of removing wood
debris from Colorado River of
Texas

Sediment deposited in Matagorda
Bay between 1909 and 1941 =
42,809,700 m?

An average sediment discharge of
1,297,264 m3 yr-!




lllustration of the importance of channel
roughness versus discharge in creating
habitat within a channel reach downstream
of a major flow diversion



Flow Regulation in Bypass Reach
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River confinement due to levees or incision disconnects floodplain and
side channels from main channel.




Levee constrained or incised river Unconstrained river
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Shaded relief topography gensrated from 8-ft grid
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Intact
unconfined
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Simulated flow

inundation areas in
Middle Reach,

RM 10 to RM 13.
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Model results showing relations between bank length and
discharge in the three subreaches
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Model Results (field calibrated)
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Change in habitat quantity per 100 cfs of diverted water
for low-flow conditions in the bypass reach

Change in channel

Subreach length/100 cfs Flow range (cfs)
Upper & Middle (uncalibrated) 1 mile (6%) 600 - 3,100
Middle (field calibrated)* 6 miles (38%) 200 - 600

*Even more side channels observed in field than predicted by model.



What about downstream discharge
and stage?
a) Relief
b) Vegetation
¢) Type of input hydrograph
d) Channel form
e) Channel slope

Recent work by Gordon B. Anderson provides
new perspective on the influence of vegetation

on flood routing.

(Anderson, G.B. 2006. Quantifying the interaction between
riparian vegetation and flooding from cross-section to catchment
scale. University of Melbourne, Australia)
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Varying channel geometry (Anderson, BG. 2006 Figure 6.13)



Discharge hydrographs at
outlet to subcatchment A
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Discharge hydrographs at
outlet to subcatchment A
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Anderson (2006, p.417) concludes:

This research shows that the impact of riparian
vegetation on flooding has been overstated in the past
as the impact of catchment-scale flood wave attenuation
was not considered. Therefore, the argument for
blocking riparian rehabilitation for fear of exacerbating
flooding is flawed.”



Flooding In Manoa Stream
O’ahu, HI



Manoa Stream, O’ahu 5-19-08
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Manoa Stream, O’ahu 10-31-04



Tree removal off right bank of
Manoa Creek after Halloween §
Flood of 2004

Manoa Stream, O’ahu 5-19-08



Putting roughness back



July 2003



January 2004



Upstream grade control site
July 2003
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Looking upstream
at downstream end
of project reach







