COGNITIVE ALGORITHMS
Concepts, Emotions, Cultures

Cognitive Aspects of Decision Making workshop
22-24 September 2008, Washington DC

Leonid Perlovsky
AF Research Lab and Harvard University

OUTLINE

• AI, combinatorial complexity, and logic
• Cognition, the knowledge instinct, and dynamic logic
• Detection, tracking, fusion (cognition)
• Evolution of cultures
COMBINATORIAL COMPLEXITY OF AI
50 years of difficulties

- Detect signal in noise and clutter at the farthest possible distance
- AI, detection, exploitation, fusion, tracking
 - Requires association (pixels<->objects)
 - If 1 object, no noise: (1) detect pixels, (2) detect objects, (3) recognize targets
 - Joint detection-discrimination-classification...
- Combinatorial Complexity (CC)
 - Need to evaluate large numbers of combinations (pixels<->objects)
 - A general problem (since the 1950s)
 - SP, detection, recognition, tracking, fusion, exploitation, situational awareness,…
 - Pattern recognition, neural networks, rule systems,…
- Combinations of 100 elements are 100^{100}
 - Larger than the number of particles in known Universe
 - Greater than all the elementary events in the Universe during its entire life
- CC prevented development of intelligent algorithms

DYNAMIC LOGIC
a mathematical breakthrough

- CC is related to logic
 - CC is Gödel's "incompleteness" in a finite system
 - Logic pervaded all algorithms and neural networks in the past
 - rule systems, fuzzy systems (degree of fuzziness), pattern recognition, neural networks (training uses logical statements)
- Dynamic Logic is a process-logic
 - "from vague to crisp" (statements, targets, decisions…)
 - Not a "statement logic"
- Overcomes CC
 - Fast algorithms
- Experimentally proven in brain imaging
THE MIND, KNOWLEDGE INSTINCT, AND DL

- **Mechanisms of the mind:**
 - Instincts, Emotions, Concepts, Behavior, Hierarchy
 - Described mathematically (concepts=models)

- **The knowledge instinct**
 - Concept-models always have to be adapted
 - Increase similarity between models and the world
 - Emotions: (dis)harmony between concepts and the world

NEURAL MODELING FIELDS
from signals to concepts

- **Bottom-up signals**
 - Pixels or samples (from sensor or retina)
 \[x(n), n = 1, \ldots, N \]

- **Top-down concept-models**
 - \(M_m(S_m,n), \) parameters \(S_m, m = 1, \ldots \);
 - Models predict expected signals from objects

- **The knowledge instinct = maximize similarity between signals and models**
 \[
 L = \sum L_x = \prod x \sum (x(n) | M_m)
 \]
 - \(M^N \) items: all associations of pixels and models (=>CC)
 - Dynamic logic overcomes this difficulty
OUTLINE

• AI, Combinatorial complexity, and logic
• Cognition and the knowledge instinct
• Detection, tracking, fusion (cognition)
• Evolution of cultures

SLOW MOVING TARGETS IN SAR

<table>
<thead>
<tr>
<th>Three targets in clutter</th>
<th>object 1</th>
<th>object 2</th>
<th>object 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/C</td>
<td>-0.70 dB</td>
<td>-1.98 dB</td>
<td>-0.73 dB</td>
</tr>
</tbody>
</table>

3 Target Image + Clutter

3 Target Image
SLOW MOVING TARGETS IN SAR

Multiple Hypothesis Testing "logical" complexity $\sim 10^{6000};$ DL complexity $\sim 10^6;$ S/C ~ 17 dB improvement

GMTI TRACKING AND DETECTION BELOW CLUTTER

Multiple Hypothesis Testing "logical" complexity $\sim 10^{6000};$ DL complexity $\sim 10^6;$ S/C ~ 18 dB improvement
• Sensor navigation, detection, tracking, and fusion
 - 3 sensors
 - All data are processed simultaneously
 - Multiple Hypothesis Testing "logical" complexity $\sim 10^{17000}$

Sensor 1 (of 3): Model Evolves to Locate
Target Tracks in Image Data

UNCLASSIFIED
Sensor 2 (of 3): Model Evolves to Locate Target Tracks in Image Data

Sensor 3 (of 3): Model Evolves to Locate Target Tracks in Image Data
PEER RECOGNITION

• 2007 Gabor Award
 - The top engineering award from International Neural Network Society (INNS)

• Elected to the Board of Governors of INNS (2008-2010)

• 2007 John L. McLucas Award
 - The top scientific award from the US Air Force

HIGHER COGNITIVE FUNCTIONS

• Abstract models are at higher levels of the hierarchy
 – Higher level concepts are general, vague, less conscious
 – Meaning and purpose are created when higher level concepts unify lower-level knowledge
 – Beautiful is an emotion related to improving these models
 – Religiously sublime feelings are related to models of behavior

![Diagram](Image)

- Similarity measures
- Action/Adaptation
- Models

meanings

situations

objects
OUTLINE

• AI, Combinatorial complexity, and logic
• Cognition and the knowledge instinct
• Detection, tracking, fusion (cognition)
• Evolution of cultures

CULTURE AND LANGUAGE

• Culture is transmitted through language

• Examine mechanisms of
 – Language and cognition
 – Language and emotion
INTEGRATED LANGUAGE AND COGNITION

• How language and cognition interact
 – Each concept m has linguistic and cognitive dual model
 • \(M_m = \{ M_m^{\text{cognitive}}, M_m^{\text{language}} \} \)
 – Language and cognition are fused at vague pre-conceptual level
 • before concepts are learned

• Language and cognition mechanisms
 – Initial concept-models are fuzzy blobs
 – Language models have empty “slots” for cognitive model (objects and situations)
 – Language is learned “ready-made” from surrounding language
 • Computer-human interaction
 – Cognitive concepts are learned to match language models

INTEGRATED HIERARCHIES

• High level cognition (integration) is only possible due to language
 – Situational awareness, layered sensing…

Cognition-sensing

Language-comm
EVOLUTION OF CULTURES

• The knowledge instinct
 - Two mechanisms: differentiation and synthesis

 • Differentiation
 - At every level of the hierarchy: more detailed concepts
 - Separates concepts from emotions

 • Synthesis
 - Connects concepts and emotions (knowledge and life)
 ➢ Connects language and cognition
 ➢ Created in the hierarchy: concepts acquire meaning at the next level

• Evolutionary dynamics
 - Complex interaction of opposing mechanisms

LANGUAGE
EMOTIONS AND CULTURES

• Conceptual content of culture: words, phrases
 Easily borrowed among cultures

 • Emotional content of culture
 In voice sound (melody of speech)
 Determined by grammar
 Cannot be borrowed among cultures

 • English language (Diff. > Synthesis)
 Weak connection between conceptual and emotional (since 15 c)
 Pragmatic, high culture, but may lead to crisis (lost meaning)

 • Arabic language (Synthesis > Diff.)
 Strong connection between conceptual and emotional
 Cultural immobility, but strong feel of identity and purpose
MODELS OF CULTURAL EVOLUTION

• Differentiation, D, synthesis, S, hierarchy, H

\[\frac{dD}{dt} = a \ D \ \frac{G(S)}{G(S)} = (S - S_0) \ \exp\left(-\frac{S - S_0}{S_1}\right) \]

\[\frac{dS}{dt} = -bD + dH \]

\[H = H_0 + e^t \]

DYNAMIC CULTURE

Average synthesis, high differentiation; oscillating solution
Knowledge accumulates; no stability
TRADITIONAL CULTURE

High synthesis, low differentiation; stable solution
Stagnation, stability increases

INTERACTING CULTURES

• Two cultures
 – dynamic and traditional
 – slow exchange by D and S

\[
\begin{align*}
dD_k/dt &= a_k D_k G(S_k) + x_k D_k \\
dS_k/dt &= -b_k D_k + d_k H_k + y_k S_k \\
H_k &= H_0 + e_k * t
\end{align*}
\]
1) Early: Dynamic culture affects traditional culture, no reciprocity
2) Later: 2 dynamic cultures stabilize each other

Knowledge accumulation + stability

PUBLICATIONS

300 publications
3 books

OXFORD UNIVERSITY PRESS
(2001; 3rd printing)

Neurodynamics of High Cognitive Functions
with Prof. Kozma, Springer

Sapient Systems
with Prof. Mayorga, Springer

2009:
The Knowledge Instinct
Yale University Press
FUTURE DIRECTIONS
research, predictions and testing of NMF/DL

• Improve human condition and understanding around the globe
 Develop predictive cultural models, integrate spiritual and material causes, measure D, S, H
 Identify language and music effects that can advance consciousness and reduce tensions
 Workshop planned at Harvard University, leading to a funded program

• Mathematical development
 KI in the hierarchy, mechanisms of Synthesis
 Add emotions to computer models of language evolution
 Joint evolution of language and cognition, multi-agent simulations

• Psycholinguistic experiments
 Measure emotionality of various languages in labs, funded at BU

• Music: theoretical and experimental
 Direct effect on emotions, mechanisms of synthesis
 Concurrent evolution of music, consciousness, and cultures, initial publications

• Brain imaging
 Brain regions used by different cultures, languages, music
 Neural mechanisms connecting language and cognition

• Semantic Web and Cyberspace
 Adaptive ontologies
 Learn from human users, acquire cultural knowledge
 Enable culturally-sensitive communication
 Help us understand each other and ourselves

BACK-UP

• CC vs. Logic
• Structure of the mind
• The knowledge instinct
• Dynamic logic
• Neuro-imaging experimental confirmation
• Beautiful and sublime
CC vs. LOGIC

• CC is related to formal logic
 – Gödel proved that logic is "illogical," "inconsistent" (1930s)
 – CC is Gödel's "incompleteness" in a finite system

• Fuzzy logic
 – How to select degree of fuzziness?
 – The mind fits fuzziness for every process => CC

• Logic pervades all algorithms and neural networks
 – rule systems, fuzzy systems (degree of fuzziness), pattern recognition,
 neural networks (training uses logic)

STRUCTURE OF THE MIND

• Concepts
 – Models of objects, their relations, and situations
 – Evolved to satisfy instincts

• Instincts
 – Internal sensors (e.g. sugar level in blood)

• Emotions
 – Neural signals connecting instincts and concepts
 • e.g. a hungry person sees food all around

• Behavior
 – Models of goals (desires) and muscle-movement...

• Hierarchy
 – Concept-models and behavior-models are organized in a “loose” hierarchy
THE KNOWLEDGE INSTINCT

• The knowledge instinct = maximization of similarity between signals and models

• Similarity between signals and models, L
 – $L = \ell(\{x\}) = \prod \ell(x(n))$
 – $\ell(x(n)) = \sum r(m) \ell(x(n) | M_m(S_m,n))$
 – $\ell(x(n) | M_m(S_m,n))$ is a conditional similarity for $x(n)$ given m
 • $\{n\}$ are not independent, $M(n)$ may depend on $n’$

• CC: L contains M^N items: all associations of pixels and models (LOGIC)

DYNAMIC LOGIC (DL)
non-combinatorial solution

• Start with a set of signals and unknown object-models
 – any parameter values S_m
 – associate models with signals (vague)
 – (1) $f(m|n) = r(m) \ell(n|m) / \sum r(m’) \ell(n|m’)$

• Improve parameter estimation
 – (2) $S_m = S_m + \alpha \sum f(m|n) [\partial \ln \ell(n|m)/\partial M_m][\partial M_m/\partial S_m]$

• Continue iterations (1)-(2). Theorem: MF is a converging system
 - similarity increases on each iteration
 - aesthetic emotion is positive during learning
• In 2007 neuro-imaging experiments proved that the brain works as predicted by dynamic logic.

• A group of scientists from Harvard University proved:
 - Bottom-up signals (from eye retina) interact with top-down signals (from memory-models).
 - Initial top-down signals are vague.
 - These interactions are unconscious.

• DL: Untapped potential for AFRL and DoD.

BEAUTIFUL AND SUBLIME

• The highest aesthetic emotion, beautiful:
 - improvement of the highest models (at the top of the hierarchy)
 - feel emotion of beautiful

• Beautiful “reminds” us of our purposiveness:
 - the “top” model unifies all our knowledge
 - vague
 - we perceive it as our purpose (“aimless purposiveness”)

• Beauty is separate from sex:
 - sex uses all our abilities, including beauty

• Religiously sublime is related to behavior.