Interspecific Effects of Amino-Dinitrotoluene Exposure

Craig A. McFarland
Michael J. Quinn, Jr.
Emily M. LaFiandra
Matthew A. Bazar
Larry G. Talent†
Mark S. Johnson

US Army Center for Health Promotion and Preventive Medicine
Health Effects Research Program

†Oklahoma State University
Amino-Dinitrotoluene (A-DNT)

- Rapidly formed from TNT
- Primary anaerobic reduction metabolite of TNT
 - Bacteria facilitated
- In vivo bioaccumulation of A-DNT from TNT exposures
 - Earthworms
 - Salamanders
- Low water solubility and volatility
- Moderate mobility in soil
- Plants - highest concentration in roots
Transformation Pathway

2,4,6- Trinitrotoluene (TNT)

2HA-DNT

2-amino-4,6- dinitrotoluene (2A-DNT)

4HA-DNT

4-amino-2,6- dinitrotoluene (4A-DNT)
Concentrations of TNT and primary breakdown products*

Soil

- TNT
- 2A-DNT
- 4A-DNT

Worms

Johnson et al. 2000
Soil concentrations of TNT (parent) and reduction products (Bazar et al. 2008)
TNT transformation

- A nitro group on the TNT ring is rapidly reduced to an amine (2A-DNT or 4A-DNT)
- In vivo and in situ
 - In situ it is concentration dependant
 - In vivo it occurs at exposure point
 - TNT parent rarely found in tissue
 - Rate limiting secondary metabolic step
- 2A-DNT or 4A-DNT most prevalent in tissue of animals exposed to TNT
- Little plant uptake of parent or metabolites
2A-DNT Effects

Mammals - Acute Only in Rats and Mice (LD50 rats 959-2240 mg/kg; mice 1342-1722 mg/kg). Central nervous system excitability and/or depression, exaggerated reflexes, ataxia, delayed deaths to 10d after dosing, yellow-orange urine; 50% absorbed (Ellis et al. 1980).

Earthworms - Toxicity 4A-DNT > TNT > 2A-DNT. 2A-DNT bioaccumulated most and needs consideration when evaluating overall TNT toxicity (Lachance et al. 2004).

Birds - Northern Bobwhite (Colinus virginianus)
Reptiles – Western fence lizard (Sceloporus occidentalis)
Amphibians – red-backed salamander (Plethodon cinereus)
Soil amphibian model

- *Plethodon cinereus*
- Lungless
- Thin integument
- Terrestrial
- Long-lived
- Small home range
 - (0.16-0.33m2 (Petranka 1998))
Salamander Toxicity Test

- 28-d exposure
- Blood parameters evaluated
- Histopathological examination
- Biomarkers

- Soils spiked at 4 concentrations + control
- Fed *Drosophila*
- Weighed weekly
- Fed every other day
- Observed daily
A-DNT soil exposures to *P. cinereus*

- **10d range finding study**
- **2A-DNT and 4A-DNT**
 - 2A-DNT more toxic
 - No mortality to 10k mg/kg, but greater occurrence of overt symptoms.
- **28d subchronic 2A-DNT study**
 - <0.05, 34, 173, 603, 1533 mg/kg (dry)
 - No mortality*
 - Lethargy, unresponsiveness, inapparentance, adverse behavior at 603-1533 mg/kg; adverse hematology at 1533 mg/kg.

*One death at 603 mg/kg not thought to be compound related (Bazar et al. *in prep*).
Sceloporus as a Reptile Model

- > 70 species from northern U.S. to Panama
- Sea level to > 4000 m, deserts to subalpine forests
- Terrestrial habitats vary geographically
- Size varies from 4 to 60gm (15 - 25g, 20 – 25cm total length)
- Diurnal, hibernates / aestivates
- Invertivore – insects - beetles, flies, ants, spiders, snails
U.S. Range Maps
Western & Eastern Fence Lizards
(Sceloporus occidentalis / undulatus)

Basic Study Design

- Acute lethal (LD_{50})
- Subacute (14-Day)
- Subchronic (60-Day)
Technical Approach

Acute → \(LD_{50} \) → **Sub-acute** → **Sub-chronic** → 60d study (N=120)

Sequential stagewise probit analysis (N=24)

Range-finding (14d) study (N=32)

5-treatments
(4 doses+1 control)
12/sex/treatment
Acute Toxicity

Cumulative Animal Mortality
LD$_{50}$ - no sex difference
Males = 1406 (947, 2087)
Females = 1867 (1076, 3237)

Depression, weakness, anorexia, weight loss, yellow vent and feces

Percent days survived decreased with increasing dosage - no sex difference.

Average (days):
Males = 9.29 ± 1.10
Females = 9.91 ± 0.99

Percent days survived decreased with increasing dosage - no sex difference.
Subacute (14-Day)

Significant effects on survival at ≥ 95 mg/kg-d. Two highest groups survived approx. 7 and 6 days.

Loss of BW was dose-related in the lower exposures due to approximate 14-d survival times.
Survival time and number of lizards per group decreased significantly at \(\geq 15 \) mg/kg-d in the 60-day experiment.
Reduced feeding rates were statistically significant at ≥ 15 mg/kg-d.

Net loss in BW at 15 mg/kg-day, coincident with a daily cricket intake of 2.5. Change in BW compared to Day 0.
Subchronic (60-Day)

No significant differences in measured hematologic endpoints.
Subchronic (60-Day)

2A-DNT Dose (mg/kg-d)

<table>
<thead>
<tr>
<th>Test</th>
<th>0</th>
<th>5</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALB (g/dL)</td>
<td>2.01 +/- 0.20</td>
<td>1.64 +/- 0.23</td>
<td>1.40 +/- 0.18</td>
<td>1.60</td>
</tr>
<tr>
<td>ALKP (U/L)</td>
<td>34.00 +/- 4.04</td>
<td>25.57 +/- 5.38</td>
<td>34.67 +/- 10.18</td>
<td>45.00</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>104.17 +/- 11.42</td>
<td>64.14 +/- 11.67</td>
<td>80.67 +/- 19.72</td>
<td>121.00</td>
</tr>
<tr>
<td>BUN (mg/dL)</td>
<td>2.67 +/- 0.21</td>
<td>2.86 +/- 0.14</td>
<td>3.75 +/- 0.48</td>
<td>6.00</td>
</tr>
<tr>
<td>Creatinine (mg/dL)</td>
<td>0.53 +/- 0.08</td>
<td>0.64 +/- 0.09</td>
<td>0.73 +/- 0.29</td>
<td>1.10</td>
</tr>
<tr>
<td>Phosphorus (mg/dL)</td>
<td>10.26 +/- 0.64</td>
<td>8.45 +/- 0.47</td>
<td>13.83 +/- 2.88</td>
<td>11.80</td>
</tr>
<tr>
<td>Uric Acid (mg/dL)</td>
<td>1.31 +/- 0.26</td>
<td>1.33 +/- 0.25</td>
<td>1.90 +/- 0.99</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Values : Mean ± SEM
Subchronic (60-Day)

No difference in liver mass. Kidney enlarged at ≥ 15 mg/kg-d.
Non-significant differences in total numbers, motility, or progression of male gametes.
Summary

• *S. occidentalis* is a useful laboratory model for toxicological investigation in reptiles.

• Clinical signs were non-specific and best characterized by anorexia, cachexia and yellow-orange discolored vent.

• Kidney effects; liver effects at levels where mortality occurred.

• LOAEL / NOAEL were determined at 15 / 5 mg/kg-d
 (Based on survival, body weight, food intake, kidney effects)
Northern Bobwhite

• Oral acute (stagewise probit)

• Oral subacute (14d range finding)
 – 0, 50, 125, 265, 550, 1000 mg/kg-d

• Oral subchronic (60d gavage)
 – 0, 0.5, 3, 14, 30 mg/kd-d
Acute Study - results

LD50 = 1167 mg/kg
Fieller’s 95%CI (356,1466)
Delta 95% (942, 1445)
Sub-acute Study - methods

Daily gavage, 14 d

Treatment levels – 0, 50, 125, 265, 550, 1000 mg/kd-d

Measurements:

- mortality
- body weights
- organ weights
- gross observations
Sub-acute Study - results

days survived

0 50 125 265 550 1000

2A-DNT (mg/kg-d)
Sub-acute Study - results

• No significant differences in body weights among treatments.

• Significant differences in liver and spleen : brain weight ratios among treatments for females only.

<table>
<thead>
<tr>
<th>organ</th>
<th>treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>brain</td>
<td>no</td>
</tr>
<tr>
<td>heart</td>
<td>no</td>
</tr>
<tr>
<td>liver</td>
<td>yes (f)</td>
</tr>
<tr>
<td>kidneys</td>
<td>no</td>
</tr>
<tr>
<td>spleen</td>
<td>yes (f)</td>
</tr>
<tr>
<td>gonads</td>
<td>no</td>
</tr>
</tbody>
</table>
Sub-acute Study - results

Liver : Brain Weight Ratios

![Chart showing liver to brain weight ratios for different 2A-DNT (mg/kg-d) levels, with annotations indicating significant differences between groups.](chart.png)
Sub-acute Study - results

Spleen : Brain Weight Ratios

![Graph showing spleen to brain weight ratios with labels a, b, c and comparisons between males and females at different 2A-DNT (mg/kg-d) concentrations.](image-url)
Sub-acute Study - results

Consistent signs upon necropsy:

- enlarged gall bladder
- green food contents in gizzard
- no food in lower GI, although crop full
- scant white feces (urates only)
Sub-chronic Study - results

Significant differences in feed consumption in both genders.
No significant differences in body weights among treatments.
Significant differences in liver : brain weight ratios among treatments for both genders.

<table>
<thead>
<tr>
<th>organ</th>
<th>treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>brain</td>
<td>no</td>
</tr>
<tr>
<td>heart</td>
<td>no</td>
</tr>
<tr>
<td>liver</td>
<td>yes</td>
</tr>
<tr>
<td>kidneys</td>
<td>no</td>
</tr>
<tr>
<td>spleen</td>
<td>no</td>
</tr>
<tr>
<td>gonads</td>
<td>no</td>
</tr>
</tbody>
</table>
Sub-chronic Study - results

Weekly Feed Consumption

male weekly feed consumption

0.5, 3, 14 mg/kg-d > 0 & 30 mg/kg-d
Sub-chronic Study - results

Weekly Feed Consumption

female weekly feed consumption

lowest feed consumption @ 0 mg/kg-d
Sub-chronic Study - results

Weekly Body Weights

Male Weekly Body Weights

<table>
<thead>
<tr>
<th>Days Exposed</th>
<th>Body Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>195</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
</tr>
<tr>
<td>11</td>
<td>205</td>
</tr>
<tr>
<td>18</td>
<td>210</td>
</tr>
<tr>
<td>25</td>
<td>215</td>
</tr>
<tr>
<td>32</td>
<td>220</td>
</tr>
<tr>
<td>39</td>
<td>225</td>
</tr>
<tr>
<td>46</td>
<td>230</td>
</tr>
<tr>
<td>53</td>
<td>235</td>
</tr>
</tbody>
</table>

Female Weekly Body Weights

<table>
<thead>
<tr>
<th>Days Exposed</th>
<th>Body Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>195</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
</tr>
<tr>
<td>11</td>
<td>205</td>
</tr>
<tr>
<td>18</td>
<td>210</td>
</tr>
<tr>
<td>25</td>
<td>215</td>
</tr>
<tr>
<td>32</td>
<td>220</td>
</tr>
<tr>
<td>39</td>
<td>225</td>
</tr>
<tr>
<td>46</td>
<td>230</td>
</tr>
<tr>
<td>53</td>
<td>235</td>
</tr>
</tbody>
</table>

Legend:
- ▲ 0
- □ 0.5
- △ 3
- × 14
- ● 30
Sub-chronic Study - results

Weekly Body Weights

male weekly body weights

female weekly body weights
Sub-chronic Study - results

Liver / Brain Weight Indices

![Graph showing liver/brain weight indices with bars labeled A,B, a,b, A, b, A,B, B, and a].

- Liver/brain weight ratio (g)
- 2A-DNT (mg/kg-d)
- Males vs. Females
Sub-chronic Study - results

Hematology results:

<table>
<thead>
<tr>
<th></th>
<th>Effect?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin</td>
<td>no</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>no</td>
</tr>
<tr>
<td>Total solids</td>
<td>no</td>
</tr>
<tr>
<td>Erythrocytes</td>
<td>no</td>
</tr>
<tr>
<td>Leukocytes</td>
<td>yes - females only</td>
</tr>
</tbody>
</table>

Image of a blood smear.
Sub-chronic Study - results

Total leukocytes (WBC)

![Graph showing total leukocytes (WBC) with sub-chronic exposure to 2A-DNT](image-url)

- a
- a,b
Sub-chronic Study - results

Blood chemistry results:

<table>
<thead>
<tr>
<th></th>
<th>Effect?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaline phosphatase</td>
<td>no</td>
</tr>
<tr>
<td>Alanine aminotransferase</td>
<td>yes - males only</td>
</tr>
<tr>
<td>Aspartate aminotransferase</td>
<td>no</td>
</tr>
<tr>
<td>Calcium ion</td>
<td>no</td>
</tr>
<tr>
<td>Creatine kinase</td>
<td>no</td>
</tr>
<tr>
<td>Total protein</td>
<td>no</td>
</tr>
<tr>
<td>Globulin</td>
<td>no</td>
</tr>
<tr>
<td>Albumin</td>
<td>no</td>
</tr>
<tr>
<td>Lactate dehydrogenase</td>
<td>no</td>
</tr>
<tr>
<td>Phosphate</td>
<td>no</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>yes, males only</td>
</tr>
<tr>
<td>Uric acid</td>
<td>no</td>
</tr>
<tr>
<td>Sodium ion</td>
<td>no</td>
</tr>
<tr>
<td>Potassium ion</td>
<td>no</td>
</tr>
<tr>
<td>Chlorine ion</td>
<td>no</td>
</tr>
</tbody>
</table>
Sub-chronic Study - results

Alanine aminotransferase (ALT)

![Bar chart showing ALT levels with a,b indicated for different groups and doses.](chart.png)
Sub-chronic Study - results

Triglycerides (TRIG)
Summary subchronic LOAELs/NOAELs

<table>
<thead>
<tr>
<th>Species</th>
<th>TNT</th>
<th>A-DNT</th>
<th>Targets (TNT/ADNT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibians</td>
<td>373</td>
<td>603</td>
<td>Blood Behavior</td>
</tr>
<tr>
<td></td>
<td>472</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>Reptiles</td>
<td>25</td>
<td>15</td>
<td>Blood Kidney</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Birds</td>
<td>70</td>
<td>30</td>
<td>Kidney/liver Liver</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>
Summary

• ADNT is primary TNT metabolite
• Effects from ADNT exposure are different from TNT
 – Differences between species
 – ADNTs are less toxic from acute exposures than TNT, however,
 – ADNTs are more toxic than TNT from subchronic exposures
 • Different sequelae, different endpoints
Acknowledgements

Patricia Beall
Gunda Reddy
George Parker
Ken Despain
Terry Hanna
Rebecca Kilby
Bob Sunderland

Development of Toxicity Data for Munition Compounds to Support Toxicity Reference Value Derivations for Wildlife.
SERDP ER-1420

The views expressed in this presentation are those of the author and do not reflect the official policy or position of the Department of the Army, the Department of Defense, or the U.S. Government.