#### Screening Quick Reference Tables:

SQuiRT UPDATE

Assessment and Restoration Division



## SQuiRTS

Provide benchmark screening levels Info for: ■ surface water ground water ∎ soil Sediment Plus sample preservation & analysis Have become a standard for Eco Screening









#### Uses

 Selection of appropriate benchmark levels for ecological SCREENING
 Multiple levels of protection can be chosen for range finding or prioritization
 They are not *de facto* clean-up targets !
 They are NOT NOAA criteria, nor standards

Proper application requires understanding of the philosophy behind screening



### What's Updated?

Some new sediment guidelines added Numerous new sources for water, especially surface water Soil benchmarks added toxicology values New topics added New functionality added These changes led to major restructuring.



# Sediment Guideline Additions

Consensus
 Average of several already listed in SQuiRT cards

- Logistic
- SLC
  - Based on benthic community analysis
- A complete suite of Dutch values for sediment/soil
   Miscellaneous others

Benchmarks with unique derivations, not comprehensive compilation



#### Water Benchmarks

Same basic perspective/presentation of acute and chronic toxicity

- Numerous new sources for standards or benchmarks though
- Progression of presented values
- Multiple values listed in some cases



#### Water: Benchmark Sources

Groundwater Additions Canadian and WHO Dutch values Surface water Additions ■ Tier II EPA EcoUpdate Canadian standards EU standards Miscellaneous



#### Water: Benchmark Sources

#### Progression of presented values

- EPA AWQC
- Tier II
- Canadian standards
- Other gov't standards
- LOELs
- Multiple values listed in some cases



## New Topics

TEF factors for dioxins and PCBs

PCB composition of Aroclors

Product characterization of hydrocarbons

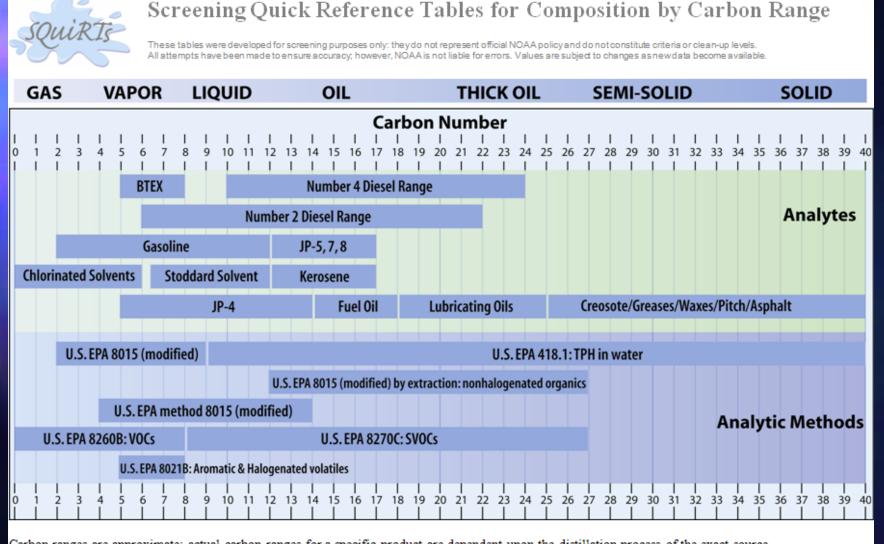


# Dioxin/PCB TEFs

TEF factors for:
Mammals
Fish
Birds
Additional information for calculation of TEQs

Allows for *prioritization*, not risk assessment




# **PCB** Composition

Per cent by chlorination by Aroclors
Prominent congeners by Aroclor
Unique congener by Aroclor
Range of congeners by Aroclor
Other diagnostics

Allows for *preliminary* screening of *potential* source characterization. NOT to be used for source apportionment!



# Composition



Carbon ranges are approximate: actual carbon ranges for a specific product are dependent upon the distillation process of the exact source. Analytic Methods generally refer to EPA SW-846 methods (<u>www.epa.gov/SW-846/index.htm</u>)

# **Functional Enhancements**



#### Screening Quick Reference Table for Inorganics in Sediment

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

| Analyte                                                                             |        | FRESHWATER SEDIMENT       |                                    |        |        |                  |         |         |                  |          | MARINE SEDIMENT          |                         |                  |              |                  |                  |             |
|-------------------------------------------------------------------------------------|--------|---------------------------|------------------------------------|--------|--------|------------------|---------|---------|------------------|----------|--------------------------|-------------------------|------------------|--------------|------------------|------------------|-------------|
| All concentrations in parts per<br>billion dry weight unless<br>specified otherwise |        | "Background" <sup>1</sup> | ARCS<br>H. azteca TEL <sup>2</sup> | TEC 3  | TEL 3  | LEL <sup>4</sup> | PEC 3   | PEL 3   | SEL <sup>4</sup> | UET 1    | <u>T</u> 20 <sup>5</sup> | <u>TEL</u> <sup>6</sup> | ERL <sup>6</sup> | <u>T50</u> 5 | PEL <sup>6</sup> | ERM <sup>6</sup> | AET 7       |
| Predicted T                                                                         | oxicit | y Gradient:               | Increasing                         |        |        |                  |         |         | > Increasing     |          |                          |                         |                  |              |                  |                  |             |
| Aluminum (%)                                                                        | AI     | 0.26%                     | 2.55%                              |        |        |                  |         |         |                  |          |                          |                         |                  |              |                  |                  | 1.8% N      |
| Antimony                                                                            | Sb     | 160                       | 10010                              |        |        |                  |         |         |                  | 3,000 M  | 630                      |                         |                  | 2,400        |                  |                  | 9,300 E     |
| Arsenic                                                                             | As     | 1,100                     | 10,798                             | 9,790  | 5,900  | 6,000            | 33,000  | 17,000  | 33,000           | 17,000 I | 7,400                    | 7,240                   | 8,200            | 20,000       | 41,600           | 70,000           | 35,000 B    |
| Barium                                                                              | Ba     | 700                       |                                    |        |        |                  |         |         |                  |          |                          | 130,100#                |                  |              |                  |                  | 48,000 A    |
| Cadmium                                                                             | Çd     | 100-300                   | 583                                | 990    | 596    | 600              | 4,980   | 3,530   | 10,000           | 3,000 I  | 380                      | 680                     | 1,200            | 1,400        | 4,210            | 9,600            | 3,000 N     |
| Chromium                                                                            | Cr     | 7,000-13,000              | 36,286                             | 43,400 | 37,300 | 26,000           | 111,000 | 90,000  | 110,000          | 95,000 H | 49,000                   | 52,300                  | 81,000           | 141,000      | 160,000          | 370,000          | 62,000 N    |
| Cobalt                                                                              | Co     | 10,000                    |                                    |        |        | 50,000+          |         |         |                  |          |                          |                         |                  |              |                  |                  | 10,000 N    |
| -                                                                                   |        | 10.000.05.000             | 00.010                             | 01.000 | 05 700 | 10.000           | 110.000 | 107.000 |                  |          |                          | 10 700                  | 04.000           | 01000        | 100.000          | 070.000          | 000 000 110 |





# **Functional Enhancements**



#### Screening Quick Reference Table for Inorganics in Water

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy, however, NOAA is not liable for errors. Values are subject to changes as new data become available.

|                                                                                 | -  |                | SURFACE WATERS: |                                         |        |         |  |  |  |  |
|---------------------------------------------------------------------------------|----|----------------|-----------------|-----------------------------------------|--------|---------|--|--|--|--|
| ELEMENT<br>Al concentrations in parts per billion<br>unless specified otherwise |    | GROUND WATER 1 | Fresh           | water                                   | Marine |         |  |  |  |  |
|                                                                                 |    |                | Acute           | Chronic                                 | Acute  | Chronic |  |  |  |  |
| Tin as Di-N-Butyl                                                               |    |                | 0.08 BC         |                                         |        |         |  |  |  |  |
| Tin as Triethyl                                                                 |    |                | 0.4 BC          |                                         |        |         |  |  |  |  |
| Tin as Triphenyl                                                                |    |                | 0.022 BC        |                                         | 34 BC  |         |  |  |  |  |
| Titanium                                                                        | Ti |                | 2,000 BC        |                                         |        |         |  |  |  |  |
| Uranium                                                                         | U  | 30             | 46 T            | 0.5 NZ                                  | 500 BC | 100 BC  |  |  |  |  |
| Vanadium                                                                        | V  |                | 280 T           | 19 E                                    |        | 50 BC   |  |  |  |  |
| Zinc (Zn)                                                                       | Zn | 5,000 *        | 120 †           | 120 †                                   | 90     | 81      |  |  |  |  |
| Zirconium                                                                       | Zr |                | 310 T           | 17 T                                    |        |         |  |  |  |  |
| Hydrogen Sulfide                                                                |    |                | 2               | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | 2      |         |  |  |  |  |
| Cyanide, free                                                                   | CN | 200            | 22              | 5.2                                     | 1      | 1       |  |  |  |  |

Freshwater criterion for certain elements (†) are expressed as a function of hardness (mg/L) in the water column. The values shown assume 100 mg/L. Values for a different hardness may be calculated using the following equations to arrive at a <u>CMC</u> or <u>CCC</u> for *filtered* samples. Hardness may range up to 400 mg/L as calcium carbonate. For hardness above this range, use 400 mg/L as the maximum value allowed. For salinity between 1 and 10 gpt, use the more stringent of either fresh or marine values.

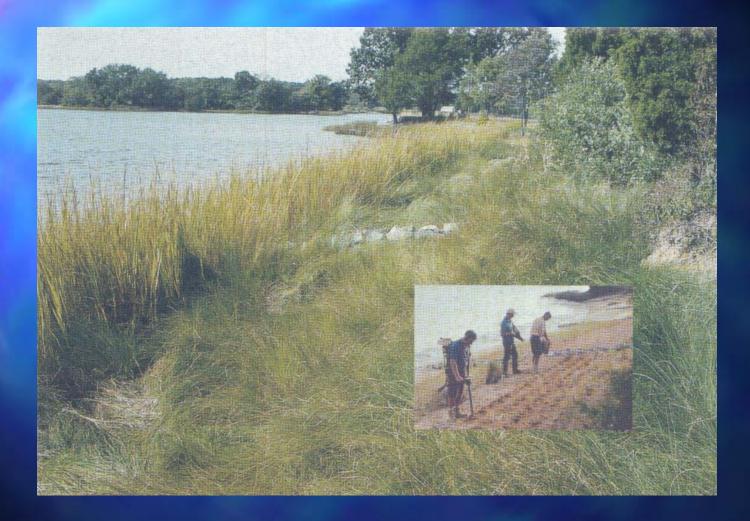
#### Sources

- 1 Primary entry is the US EPA MCL value, followed by the WHO drinking water guidelines.
  - Maximum Contaminant Levels (MCLs): http://www.epa.gov/safewater/index.html
  - W-World Health Organization's (WHO) Drinking water guidelines: http://www.who.int/water\_sanitation\_health/dwg/en/
  - C Canadian water Quality Guidelines: http://www.ec.gc.ca/CEQG-RCQE/English/Cegg/Water/default.cfm

2 – Primary entry is the US Ambient Water Quality Criteria, followed by the lowest of TierII SAVs or available standards and guidelines. EPA <u>Ambient water Quality Criteria (AWQC): http://www.epa.gov/waterscience/criteria/aglife.html</u>

- T Tier II Secondary Acute Value: http://www.esd.ornl.gov/programs/ecorisk/tools.html
- BC British Columbia Water Quality Guidelines (either working or recommended): http://www.env.gov.bc.ca/wat/wg/
- NZ Australian & New Zealand ECLs and Trigger values: ANZECC Oct 2000, Volume 1, The Guidelines. www.mfe.govt.nz/publications/
- E EcoUpdate: www.epa.gov/oswer/riskassessment/ecoup/

Lowest Observable Effect Levels (LOELs) previously published by EPA are also included since these essentially were the basis for many state standards. EPA LOELs: EPA Water quality Criteria Summary, Office of Science & Technology, Health & Ecological Criteria Div., Ecological Risk Assessment Branch, 1991. Full listings appeared in various Fed. Register notices and in EPA's Quality Criteria for Water, 1992.




No longer grouped by class

#### Use CAS to search



# The Goal



