OPEN WATER SITE MANAGEMENT AND CONTROLS

Susan E. Bailey
US Army ERDC, Vicksburg, MS
Susan.E.Bailey@usace.army.mil

Risk Management

Risk Assessment Risk Management

CONTROL CONTRO

Implemented controls should be commensurate with potential risk...

Open Water Placement Risk Management Considerations

- Material Suitability
- Site Characterization
- Site Designation/ Selection
- Operational Considerations
- Design Evaluations
- Control Measures/ Management Actions
- Site Management Plan
- Monitoring

Material Suitability

 Is proposed dredged material suitable for open water placement at the site without special management or controls?

- MPRSA sites via site designation
- CWA sites project specific
- Contaminant impacts
 - MPRSA via OTM procedures
 - CWA via ITM procedures

Site Characterization

- Bathymetry
- Water depth/ stratification
- Current/ wave conditions
- On-site biological resources

Proximity to sensitive resources

Site Designation/ Selection

Ocean Site Designation (MPRSA)

- Formal Designation Process
- EPA Designated General Use (Section 102)
- USACE Designated Specific Projects (Section 103)
- Final and Interim Designations
- Site Selection in US Waters (CWA)

Operational Considerations

- Equipment and placement techniques
- Time, rate, location, and methods of placement
- Quantity and frequency of materials placed
- Navigation and positioning
- Site controls, e.g. Buoys
- Coordinating site use among permit holders
- Monitoring

Placement Methods

See TN at: http://el.erdc.usace.army.mil /elpubs/pdf/doerr9.pdf

Tools to Evaluate Effectiveness

- Water Column Dispersion
 - STFATE or CDFATE or others
- Placement technique, location, and rate
 - Mound Development ~ MDFATE / MPFATE
- Long-Term Stability and Site Capacity
 - Consolidation ~ PSDDF
 - Erosion/ Consolidation ~ LTFATE
- Far Field Transport ~ TABS, ICM, PTM

STFATE

Site 69b, TSS

Open Water Control Measures

Water Column Management

- Submerged discharge
- Silt Curtains
- Geocontainers
- Treatment (polymer addition)
- Reduce discharge rate
- Promote mixing (dump while under tow)

Benthic Management

- Treatment (not typically done)
- Lateral confinement or CAD
- Capping with cleaner dredged material or armor
- Geocontainers

Operational Modifications

- Select different equipment type
- Select different equipment size
- Control placement operation
 - Location
 - Rate
 - Method

STFATE Evaluation of Alternatives 3000 CY Barge – Single Dump

STFATE Evaluation of Alternatives 1500 CY Barge – Single Dump

Max Conc on Grid

STFATE Evaluation of Alternatives 3000 CY Barge – Spreading

Submerged Discharge

- Can reduce water column dispersion
- Can improve accuracy of placement
- Pipeline configurations
- Diffuser design available
- Tremie technology

Barge with Tremie

Submerged Diffuser

Silt Curtains

Purpose

To control SS/turbidity in the water column (mainly at dredging site)

Advantages

- Can be used to protect sensitive environments
- Can allow particles to settle out of the upper water column
- Commercially available

Limitations

- Strong currents
 - (> 1 knot/1.5 fps)
- High winds
- Debris/Ice
- Excessive wave heights
- Fluctuating water levels
- Must allow traffic in/out
 - Bubble curtains

http://el.erdc.usace.army.mil/elpubs/pdf/doere21.pdf

Geo-containers

- Geotextiles used for solids containment
- Can reduce water column dispersion
- Can reduce capping requirements
- Engineering design approaches available
- Operational aspects need refinement

CAD/Capping

Purpose - Manage risks from contaminated material by:

- Physical isolation of contaminants
- Reduction of contaminant flux
- Physical stabilization
 - Limiting losses during placement
 - Reducing mobilization and erosion

CAD Approaches

- Existing Pits/Fills or Excavated Pits (most stable)
- Lateral Confinement

- Mounds
- In SituCapping

Capping Considerations

- Placement and design of constructed cells
- Placement techniques for unsuitable material
 - Controlled, accurate
- Placement techniques for cap material
 - Even coverage
 - Avoid displacing unsuitable material
- Cap design account for:
 - Erosion
 - Bioturbation
 - Recolonization
 - Consolidation
 - Contaminant transport
 - Operational factors

Cap Designs

Minimal Isolation Capping

Isolation Capping

Cap Design Specifications

Cap thickness designed to prevent breach from:

- Props
- Anchors
- Fishing trawlers/nets
- Storm waves
- Flood currents

Materials

- Erosion control armor, cohesive
- Contaminant control
- Habitat

Example Cap Design

Capping Materials

Granular Materials

- Sediments
- > Soils
- Quarry run materials
- Fabrics, Membranes and Specialty Materials
- Armor Stone
- Amendments
 - Adsorbents
 - Reactants

Cap Processes

Physical

- Erosion and armoring
- Deposition
- Consolidation
- Mixing and disruption

Chemical

- Diffusion
- Advection/Convection
- Biotic Degradation
- Abiotic Degradation
- Adsorption/Retardation
- Volatilization/Stripping by Gas Transport

Biological

- Recolonization
- Bioturbation

Recovery/Cap Model

Long term effectiveness evaluations

Cap Placement Methods

Eagle Harbor

Capping Guidance

USACE guidance for DM capping

- http://www.wes.army.mil/el/dots/doer/pdf/trdoer1.pdf
- EPA (ARCS) guidance for ISC
 - http://www.epa.gov/glnpo/sediment/iscmain/index.html

Site Management Plans

- Roles and responsibilities
- Management objectives
- Specifics on operations and management
- Inspection and enforcement
- Monitoring requirements

Open Water Site Monitoring

Need for Monitoring

- Evaluate effectiveness of management
- Evaluate environmental impacts
- Recommend modifications

Monitoring Plan

- Clear objectives
- Testable hypotheses
- Methods and equipment
- Management Actions
- Silent Inspector
 - Location
 - Volume

Maintenance and Rehabilitation

- Assess findings to establish needs by comparing with performance predictions, considering natural
 - > If in agreement or better, adapt monitoring plan to findings
 - > If contradicts predictions, determine processes of interest
 - Perform process-based confirmation monitoring
 - Determine maintenance and rehabilitation needs
- Maintenance: Restores performance in response to extreme events
- Rehabilitation: Upgrades performance to achieve long-term performance goals

processes

Sediment Profilin

amera (SPC

Open Water Monitoring Tools

Summary

- Site selection / characterization
- Material suitability
- Planning the disposal operation
 - Models available
- Site controls
- Site management plan
- Monitoring

Questions??

