Contaminated Sediment Assessment and Management

Trudy J. Estes^{†,} David W. Bowman^Ψ and Larry M. Zanko^ξ

[†]US Army ERDC, Vicksburg, MS, Email: <u>Trudy.J.Estes@usace.army.mil</u>

Ψ USAE District, Detroit

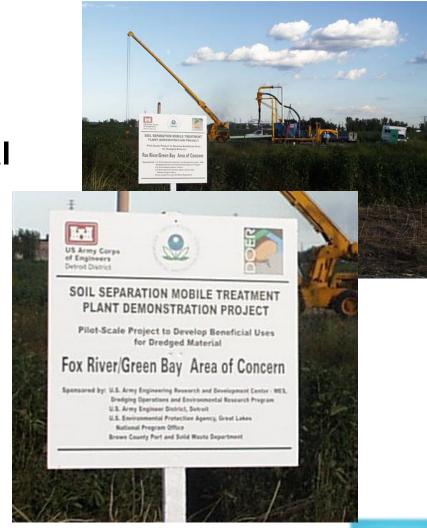
^ξUniversity of Minnesota, Duluth

Selected Regional Issues...

- Material recovery issues and options
 - > Erie Pier
- Hg contaminated sediments
 - Disposal management issues
 - Impacts on material recovery and re-use

Material Recovery

- Analogous to an Indiana Jones Movie...
 - Everybody's after the same thing
 - Differing opinions on how to get there
 - Many unexpected turn of events

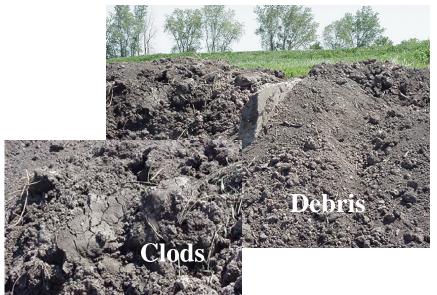


Dr. B

Field Demonstrations

Saginaw River CDF

- > 1991-92 ARCS demo
- Bergmann USA
- 30yd³/day 300 yd³ total
- Green Bay
 - > 2000 1-day demo
 - GLNPO/Detroit/ERDC
 - Modular, mobile, low \$\$ system
 - Feasibility evaluations
 - Small scale projects



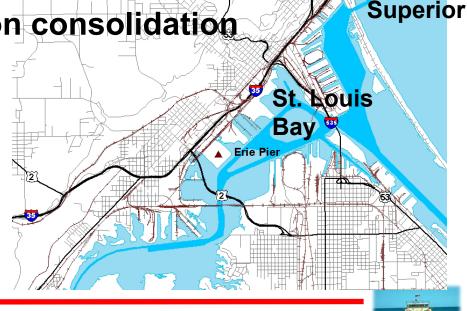
Power screen

- Dry size separation
- Clay clods problematic
- Some blinding with coarse debris

- 24 in Maximum Density Separator (MDS)
 - > 1200 gpm capacity
 - Nominal 75 tons solids/hr
- 75 µm cut size
- Processing objectives
 - <10% fines in sand</p>
 - PCBs < 1mg/kg in sand</p>

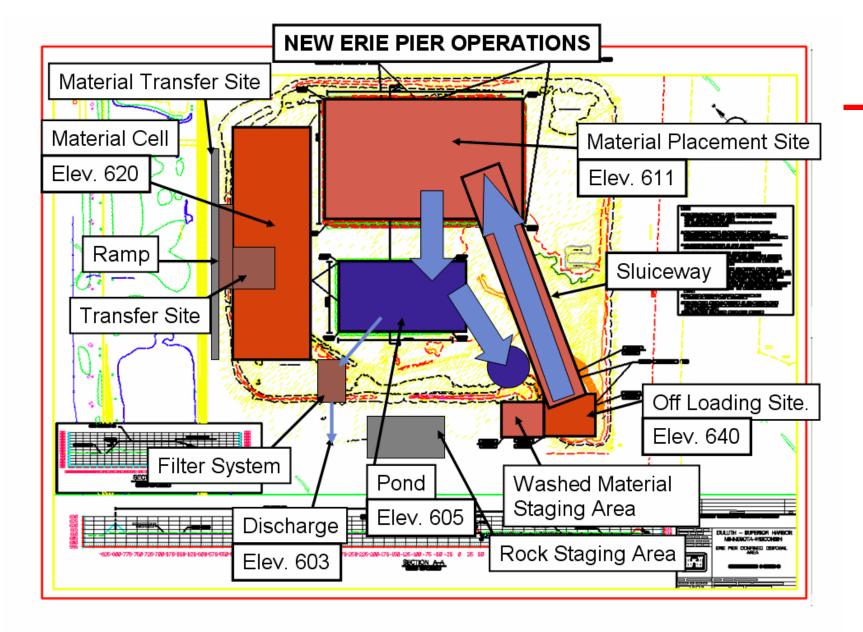
Eductor pump

- > Fed from decant pond
- Fairly effective in vegetated areas
- Problems with woody debris
- Variable feed solids


- PCBs reduction
 - > Higher than predicted
 - > ~8% fines by volume
- Available equipment
 - > 12 in mobile MDS
 - Wet screen
- Take away lessons

Erie Pier

- 89 Acre site constructed 1978-79
- 1.1M yd³ capacity, 10 year life expectancy
- As of 2007....
 - Over 2.2M cubic yards placed in Erie Pier
 - Dike raising
 - Material and foundation consolidation
 - Sand recovery
 - > 10 year remaining life


Lake

Erie Pier Replacement?

- One prospective site identified in DMMP
- \$6-8M projected cost, excluding
 - Land acquisition cost
 - Social or environmental costs
- 1-1.3M yd³ capacity
- 10-13 year life expectancy
- 20 year disposal option required for DMMP

Cost of Transitioning to Re-use

- Estimated \$250,000/yr initial cost
 - > Infrastructure
 - Material staging
- FY2006
 - 100K yd³ fines material staged for removal
 - > ~\$500K

Water Management Issues

- 8-10M gallons
- Limited discharge to municipal WWTP
- Other management options
 - Land application
 - Discharge to surface water
 - Other recycling/reuse offsite
- NPDES discharge permit needed for discharge
 - Pond concentrations > Hg WQC
 - Hg WQC 1.3 parts per trillion¹

¹ Great Lakes Initiative for mercury

Effluent Hg Treatment

Needs

- Long-term
- > Low-cost
- Low-tech

- University of Minnesota Duluth Natural Resource Research Institute (NRRI)
- Unamended
- Amended with peat, magnetite, Hg sorbents
- In combination with electrodes
- Single gradation, tailings source, flow rate

Taconite and Hg

- Taconite low grade iron ore
 - Hg(II) converted to elemental Hg(0) during firing
 - Most volatilizes
- Hg(0)
 - Low solubility and solids sorption
 - Remains in atmosphere until oxidized to Hg(II)
- Hg(II)
 - Readily forms non-volatile species with organic and inorganic compounds
 - These compounds are water soluble & sorb to solids
 - Inorganically bound Hg(II) quickly binds to organic carbon or sulfide in aquatic environments

Taconite Tailings

Tailings

Sand size by-product of taconite processing

Given

- Predominance of atmospheric deposition as Hg source to water bodies
- Comparatively low Hg concentration in tailings basins
- Apparent Hg sorption to tailings

Potential issues

- Disposal and bulk of tailings used in filtration
- Hg(II) may be dissolved, DOC or particulate associated
- Filtration AND sorption may be needed
- Colloid filtration/flocculation difficult
- Potential Hg contribution of tailings unknown

Other options

- Multi-media filter preceding magnetite filter
 - Remove colloidal materials
 - Extend life of magnetite filter
 - Potentially disposable in CDF
- Zeolite filtration
 - Microporous, aluminosilicate minerals
 - Commonly used as commercial adsorbents
 - lon exchange metals
 - Porous capture of organic compounds
 - Relatively inexpensive

Legacy Act Sediments

- Impact on additional volume on CDF useful life
- High sediment Hg concentrations
 - > 40 ppm range
- CDF surface placement
 - Exposure risk due to Hg(II) solubility
- CDF subsurface placement
 - Methylation risk

Hg Methylation

- Methyl-mercury
 - ➤ CH₃Hg⁺ or "MeHg"
- Produced from Hg²⁺ present in environment
- Associated with bacterial reduction of So4²⁻ to S²⁻
- Predominant species present in fish tissue
- Persistent, bioaccumulative
- Highly toxic
 - Kidneys and central nervous damage

Summary

- Material recovery not straightforward
 - Logistical
 - > Economic
 - Regulatory
- Erie Pier case study
 - Dissolved Hg limiting water management and material recovery
- Legacy Act sediments
 - Impact CDF service life
 - Management requirements to minimize Hg mobility and methylation are contradictory

References

- US Environmental Protection Agency (1994). "Pilot-Scale Demonstration of Sediment Washing for the Treatment of Saginaw River Sediments," EPA 905-R94-019. Chicago, Ill.: Great Lakes National Program Office.
- Minerals Coordinating Committee 2003. "Mercury and Mining in Minnesota
 – Final Report", Michael E. Berndt, Minnesota Department of Natural
 Resources, St. Paul, MN.

