EFFECTS ASSESSMENT

Doug Clarke Douglas.G.Clarke@usace.army.mil

RISK FRAMEWORK

Topics

- Typical Receptors
- Modes of impact
- Dose-Response Relationships
- Characteristics of Exposure
- Characteristics of Response
- Hypothetical examples

Sssssome Receptors of Interest

SUBMERGED AQUATIC VEGETATION
SEA TURTLES
STRIPED BASS
STURGEON
SALMON
SHAD
SHELLFISH
SEAGULLS

SPAWNING HABITAT
SENSITIVE LIFE HISTORY STAGES

Some Receptors of Interest

AND DON'T FORGET.....

TIGER BEETLES
PIPING PLOVER
MANATEES
OYSTERS
FLOUNDER
WALLEYE
CORAL
FW MUSSELS
LEAST TERN

NURSERY OR FORAGING HABITAT

Stressors

- Chemical
 - Contaminants
 - WQ (e.g., ammonia, sulfides, nutrients, DO)
- Physical
 - Total Suspended Solids/Turbidity
 - Light Attenuation
 - Deposition
 - Altered Habitat
- Hydraulic entrainment
- Noise
- Blasting

Factors That Influence Effects

- Ambient conditions
- Static versus dynamic dose
- Duration of exposure
- Intensity of exposure
- Life history stage
 - Egg
 - Larval
 - > Juvenile
 - > Adult
- Species-specific behavior

THRESHOLD MODEL

THRESHOLD MODEL

Hypothetical Receptors

- Outmigrating juvenile salmon
- Adhesive fish eggs at offshore spawning habitat
- Endangered freshwater mussels

Hypothetical Fish Receptor

Ironhead Salmon (Oncorhynchus whopperi)

Fish Exposure to Plumes

Fish Migration Corridor

Dynamic Dose

Hopper Dredge TSS Time Series

Bucket Dredge TSS Time Series

Cross-section Distance (m)

Response Characteristics

Severity of effect

- Behavioral
- Sublethal
- Lethal

SEV	EFFECT
0	No effects
1	Alarm reaction
2	Abandonment of cover
3	Avoidance response
4	Short-term reduction of feeding rate or success
5	Minor physiological stress; coughing or increased respiration rate
6	Moderate physiological stress
7	Moderate habitat degradation or impaired homing
8	Major physiological stress; long-term reduction in feeding rate or success
9	Reduced growth rate; delayed hatching; reduced fish density
10	0-20% mortality; increased predation; severe habitat degradtion
11	>20-40% mortality
12	>40-60% mortality
13	>60-80% mortality
14	>80-100% mortality

Juvenile Salmonids

Limits of

Probable

Exposure to

Juvenile Salmonids

Fish Receptor Response Characteristics

- Aspects of response relevant to risk management
 - Seasonality
 - Migration rate affects duration of exposure
 - species specific (e.g., 0.75 1.5 miles/hr)
 - Threshold with respect to maximum exposure
 - Threshold with respect to duration
- Reliance on lab versus field-derived data
 - Behavioral effects based on few observations
 - Sublethal effects based on indirect measures (e.g., levels of stress hormones in blood)
 - Lethal effects based entirely on lab data using a static dose

Hypothetical Fish Egg Receptor

Fallguy (Sander toddahoiensis)

Duration of exposure for a *sessile receptor* such as adhesive fish eggs, bivalve mollusks, or SAV will depend on plume dimensions and dynamics in relation to the rate at which the dredge moves through the project site.

Dredging-Induced Deposition

Bucket Dredge

Hopper Dredge

Time Series of Deposition

Deposition at Offshore Placement Site

Barge Placement

Hopper Dredge Placement

Time Series of Deposition

Effects of SS on Fish Eggs

Acute Exposure

- Abrasion/occlusion of chorion
- Plugging of micropyle

Chronic Exposure

- Delayed hatching mediated by physiological response to impaired gas exchange
- Accelerated hatching mediated by turbidity-induced change in water temperature regime

Effects of Sedimentation on Fish Eggs

Sublethal

- Interference with fertilization
- Abraded surface membranes and impaired gas exchange
- Loss of adhesion (for adhesive eggs)
- Delayed cell cleavage and differentiation
- Interrupted or incomplete development
- Delayed hatching and impaired larval development

Lethal

- Physical removal during dredging process
- Mortality associated with partial or total burial

Summary of Deposition Effects on Fish Eggs

- Timing of acute exposure could be critical
- Once fertilized, most eggs are relatively tolerant of SS
- Net deposition of less than half an egg diameter should be tolerated by most species

Hypothetical Mussel Receptor

Brainsplitter (*Unio idontknowicus*)

Potential Mussel Exposures

Acute exposures

Smothering and burial

Chronic exposures

Elevated sedimentation rates and persistent

overburden

Elevated TSS

Effects of Sedimentation on Mussels

Behavioral Responses

Use of foot to migrate vertically Temporary valve closure

Physiological Responses

Increased inorganic/organic intake ratio requires
greater metabolic expenditure for clearance
Change in excretion rate/excretion products
Reduced gonad development and interference with
reproductive cycle
Decreased calcification / growth
Increased respiration rate

Greater susceptibility to parasites/pathogens

Lethal

Suffocation

Summary of Effects on Mussels

- Short-term exposures (up to a week) of elevated SS or deposited sediment tolerated well by "clamming up".
- Thin-shelled lentic species are relatively mobile, capable of migrating upward through overburden
- Long-term deposition (> month of 2 cm)
 could cause mortality of thick-shelled lotic
 species. Thin-shelled lentic species are
 better adapted to depositional conditions.

The End

Key References

- Fleming, S. et al. 2005. Magnitude-duration based ecological risk assessment for turbidity and chronic temperature impacts: Method development and application to Millionaire Creek. British Columbia Ministry of Environment, Surrey.
- Newcombe, C. and Jensen, J. 1996. Channel suspended sediment and fisheries: A synthesis for quantitative assessment of risk and impact. N. Amer. J. Fish. Management 16:693-727
- Wilber, D. and Clarke, D. 2001. Biological effects of suspended sediments: A review of suspended sediment impacts on fish and shellfish with relation to dredging activities in estuaries. N. Amer. J. Fish. Management 21(4):855-875

