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 Models are built in the present of uncertainty

— Input factors (parameters, initial and boundary conditions)
— calibration data (error, scale, etc.)

— equations/model structure...

* This is a source of growing anxiety among
developers and users of dynamic, complex
simulation models

* |n particular, there is anxiety about the effects
of various sources of uncertainty on model
output
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Have models fallen out of grace?
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‘...all models are wrong, some are useful

George Box, the industrial statistician, is
credited with the quote, although probably
W.E. Deming the first to say that was W. Edwards Deming. G. Box

[from A. Saltelli. 2008. SAMOQ’08. Venice, ltaly]
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We just can’t predict, concludes N. N. Taleb, and we are
victims of the “ludic fallacy”, of “delusion of
uncertainty”, and so on... Modelling is just another
attempt to ‘Platonify’reality...

Nassim
Nichola Taleb,
The Black
Swan, Penguin,
London 2007

[from A. Saltelli. 2008. SAMOQ’08. Venice, ltaly]




UF [FLORIDA

Agricultural and Biological Engineering

“Groundwater models cannot be validated”
(Konikov and Bredehoeft, 1992)

“Verification, Validation and Confirmation of numerical
models in the earth sciences”.
(Oreskes et al. 1994, Science)

According to Oreskes, natural systems are never closed,
and models put forward as description of these are
never unique.

Models can never be ‘verified’ or ‘validated’, but only
‘confirmed’ or ‘corroborated’.

[from A. Saltelli. 2008. SAMOQO’08. Venice, Italy] LLl_ S E R D P
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Useless Arithmetic: Why
Environmental Scientists
Can't Predict the Future

by Orrin H. Pilkey and Linda
useless-arithmetic: Pilkey-Jarvis

Wivy Errvirosrnentsl Sciontices

Can" Prodiict e Fittere

‘Quantitative mathematical
models used by policy
makers and government
administrators to form
environmental policies are
seriously flawed’

[from A. Saltelli. 2008. SAMO’08. Venice, Italy] LLI_ S E RDP
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wEs BESTSELLER

NEW YORK T1

[from A. Saltelli. 2008. SAMOQ’08. Venice, ltaly]

... in the context of climate change....

“They talk as if simulation were
real- world data. They ‘re not.
That's a problem that has to be
fixed. | favor a stamp:

WARNING: COMPUTER
SIMULATION - MAY BE
ERRONEOUS and UNVERIFIABLE

Like on cigarettes [...]”
Op. Cit. p. 556.
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The Real Issue...

 The real issue, when modeling, is the need to
assess uncertainty (transparency) and how to

develop reliable procedures for this.

HYDROLOGICAL PROCESSES
Hydrol. Process. 20, 0-0 (2006)

Iﬁ_iVI‘I'ED COMMENTARY TODAY

Published online In Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/hyp.6396

On undermining the science?

Keith Beven*

Lancaster Environment Centre,
Lancaster University, Lancaster
LAT 4Y(Q. UK

*Correspondence Lo:

Keith Beven, Lancasler
Environmen! Centre, Lancasier
University, Lancaster LA]
4YQ, UK.

E-mail: K.beven® lancaster. ac.uk

At the 2006 European Geophysical Union meeting in Vienna, I was
challenged (and not for the first time) about overemphasising the
issue of model uncertainty and model rejection, with the consequent
danger of undermining the confidence of stakeholders and users
of model predictions, in the science on which they are based. It is
therefore interesting to consider whether this is a reasonable charge.

We can break the issue down into three parts, which will be
considered in turn with a view to starting a debate, in HPToday,
about the issues raised:
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* Uncertainty, Complexity and Relevance
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Model complexity

grad-students

death

grad school : mid-life : old-news
Researcher life cycle
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Model Complexity vs. Uncertainty: A Tug of War?
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Number of Parameters in Model

Complexity

(Snowling and Kramer,1991) (Hanna, 1993)

Model RELEVANCE: significance with respect to the output(s)
of interest (objective functions)
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As model complexity increases it leads to:
* QOver-parameterization
e Hard/impossible to parameterize

e Equifinality, non-unigueness

* Loss of RELEVANCE
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“Principle of Incompatibility” (Zadeh, 1973)

...as the COMPLEXITY of a system
increases, our ability to make precise
and yet significant statements about
its behavior diminishes until a
threshold is reached beyond which
PRECISION and RELEVANCE become
almost mutually exclusive
characteristics..."
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* A New Hope? Global Sensitivity/Uncertainty Analysis
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 What processes should be added?
 How does this impact uncertainty?
* Can the real system behavior be modeled?

 Will the model be usable based on available
knowledge of the system (input factors)?
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WHY? Apportions output variance into input factors

fa .
ﬂﬂ i ~ < GLOBAL SENSITIVITY ANALYSIS

: /| r -mf\ @

] /r‘ \ :
EpzemtL LTS 2 2
54ﬁﬁﬂﬁmi‘ —

- INPUT
" FACTORS ==

?
=  OUTPUTS

UNCERTAINTY ANALYSIS > HOW MUCH?

Propagates input factor variability into output
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WHY? Apportions output variance into input factors

N :
/m\_‘ - — < GLOBAL SENSITIVITY ANALYSIS
S N

- INPUT
" FACTORS ==

?
=  OUTPUTS

UNCERTAINTY ANALYSIS > HOW MUCH?

Propagates input factor variability into output
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* Local vs. global sensitivity

_____ ClassicSA__|GSA______

Model Linear No
Monotonic assumptions
additive

No. of factors O-A-T All

Factor range Local Whole PDF

(derivative)

Interactions No Yes

1= SERDP
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HOW MUCH, WHY, WHEN...
e surprise the analyst,

e find technical errors in the model,

* gauge model adequacy and relevance,

e identify critical regions in the space of the inputs
(including interactions),

» establish priorities for research,
e simplify models,

 verify if policy options make a difference or can be
distinguished.

* anticipate (prepare against) falsifications of the analysis

[Saltelli, 2006, SAMO Venice] LL| S E R D P
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For model with large number of factors a two-step
global process is recommended:

1. Qualitative Screening with limited number of simulation
(p.ej. Morris Method)
Ranking and selection of important factors (u*); Presence
of interactions (0)

2. Quantitative Variance-based method: (p.ej. Extended
Fourier Analysis of Sensitivity Test - Extended FAST,

Sobol, etc.)
First order indexes (S;, direct effects); Total order (S,

interactions), Uncertainty analysis

1= SERDP
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GSA/UA evaluation framework

Global UNCERTAINTY Analysis (GUA)
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Input 2

Input k
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* A step-wise model-building approach
integrated with global uncertainty and
sensitivity analysis to evaluate sources of
uncertainty can be used to guide model
development across increasing levels of model
complexity,

— Avoid unintended effects

— Achieve precision and capacity of the model to reproduce

real, and complicated, system responses (alternative
states, etc.)

1= SERDP



UNIVERSITY of

UF [FLORIDA

Agricultural and Biological Engineering

OUTLINE

e Case study 1: Complex modeling in Everglades
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e Currently the Water authority (SFWMD) is deploying a
hydrodynamic regional simulation model (RSM) to manage
- the large and complex south Florida Everglades region.
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* Two stable system states are observed in
these wetland systems (Beisner et al., 2003;
Scheffer, 1990; Scheffer et al. 1993)

— algae (phytoplankton)-dominated state

— macrophyte-dominated (saw-grass/cat-tails)

* In addition to complexity vs. uncertainty/
sensitivity changes, what is the model
complexity needed to simulate alternative
equilibrium states (relevance)?

1= SERDP
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 What processes should be added?
 How does this impact uncertainty?
* Can the real system behavior be modeled?

 Will the model be usable based on available
knowledge of the system (input factors)?




UNIVERSITY of

UF FLORIDA Complexity vs. Relevance Analysis

Agricultural and Biological Engineering

* Run GSA/UA (Morris and eFAST) for a test domain
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EXPLANATION
[ TINFLOW BOUNDARY CELL

1 OUTFLOW BOUNDARY CELL

* Effect of 3 alternative complexity levels
» Effect of 3 Engineering Designs (velocity= 50, 100 & 500 m/d)

Table 5 -4. RSM/WQ simulations run in the analysis

No. No. No.of sinulations
Level velocities parameter Monis FAST Total
1 3 8 90x3 5000x3 15270
2 3 12 1303 5004x3 15402
3 3 16 1703 5008x3 15534
Total simulations= 1170 45046 46206

* Studied many outputs — here we present surface water dissolved P
(C°sw)

Jawitz, Mufioz-Carpena, Muller and James. 2008. U.S. Geological Survey Scientific Investigations o0 | er S E RD P
Report 2008-5029. http://pubs.usgs.gov/sir/2008/5029 boE
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SURFACE WATER

EXPLANATION

Material flow

« Phosphorus flow

So

Jawitz, Mufioz-Carpena, Muller and James. 2008. U.S. Geological Survey Scientific Investigations o0 [ een S E RDP
Report 2008-5029. http://pubs.usgs.gov/sir/2008/5029 DOE



UNIVERSITY of

gﬁurﬂhgﬁc{vgﬁeering L e Ve I 2

Inflow Outflow
pl
= C
SURFACE WATER
EXPLANATION
Material flow

« Phosphorus flow

So

Jawitz, Mufioz-Carpena, Muller and James. 2008. U.S. Geological Survey Scientific Investigations o0 [ een S E RDP
Report 2008-5029. http://pubs.usgs.gov/sir/2008/5029 DOE
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Jawitz, Mufioz-Carpena, Muller and James. 2008. U.S. Geological Survey Scientific Investigations o0 [ evn S E RDP
Report 2008-5029. http://pubs.usgs.gov/sir/2008/5029 DoE ™
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Input factor probability distributions

Parameter definition

Distribution

Complexity

Coefficient of diffusion Ky B (7x10710, 4x1079) m?/s X
Coefficient of adsorption ky B (8x10°, 11x10°) m3/g X
Soil porosity 0 B (.7,0.98) Unitless X
Soil bulk density Py B (.05, 0.5) Unitless X
Soil oxidation rate Koy B (.0001, 0.0015) 1/d X
P mass fraction in organic soil C.° B (.0006, 0.0025) Unitless X
Longitudinal dispersivity A, U (70, 270) m X
Transverse dispersivity A, U (70, 270) m X
Plankton growth rate kg B(.2,2.5) 1/d X
Plankton half saturation constant Ky B (.005, 0.08) g/m3 X
Plankton settling rate k! B (2.3x107, 5.8x10°) m/s X
P mass fraction in plankton Cp,P b (.0008, 0.015) Unitless X
Macrophyte growth rate kg™ B (.004, 0.17) 1/d

Macrophyte half saturation constant ky/,mP B (.001, 0.01) g/m3

Macrophyte senescence rate kg,mP B (.001, 0.05) 1/d

P mass fraction in macrophytes Conr B (.0002, 0.005) Unitless
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* Changes of the output PDFs w/complexity

2 A 4 3
3 Level 1 2 Level 2 g Level 3
@ o
et 2 [
§ E‘ plattykurtic E bimodal
o leptokurtic 8 s
8 2 3
& £ <]

» O > 5

Output Output

Output

* At level 3, the platykurtic area represents conditions of
phytoplankton dominance and the second equilibrium
dominance of macrophytes - RELEVANCE
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Direct effects, Si
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* Case study 2: Sea level rise and coastal habitat
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 Sea level rise due to
climate change

* Land use change
(urbanization)

« Hurricane frequency
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* Important forage areas and
nesting habitats for
endangered shoreline birds
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Conceptual model

Varied Information& Data  TER-S Model Tools at Scientific/Model
both Habitat and Results
Population Scales "
*x ¥
“
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Sea-level Lo i W
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) s E e : Habitat specific data: |
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Landscape Information:
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* Create a systematic
modelling tool that
integrates climate data,
land use and ecosystem
information to

* Evaluate the effect of
climate alteration on
habitats and population
dynamics of birds

1= SERDP



UF [FLORIDA
Ag

ricultural and Biological Engineering

Motivating questions:

1. Will beach (bird habitat) disappear
due to climate change/sea level rise?

2. If so, what factors will affect the loss of
habitat
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Spatially explicit, land use change as affected by local SLR

>
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Model Inputs

Input data:

e Elevation

* Slope

* Land cover
» Site specific information

e SLR scenarios (IPCC, 2001)

All data is obtained from open
source databases

081

o
@
 —

IPCC
Vscenaﬂos‘

- SERDP
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Fate of Salt Marsh: Gain or Loss?
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Fate of Salt Marsh: Gain or Loss?
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Fate of Salt Marsh: Gain or Loss?
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Fate of Salt Marsh: Gain or Loss?
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* Important factors:
* elevation
* historic trend of sea level rise
* accretion/sedimentation rates
* Interactive factors:
* historic trend of sea level rise
* accretion/sedimentation
* Dominant processes:
* inundation
* accretion/sedimentation
* Effects of sea level rise:
 accretion/sedimentation outweighed other factors in low-elevation
wetlands
* low elevation areas are more likely to be affected by climate change
 variance of output is driven by more factors

* Fate of Plover habitat depends on combinations of input factors?
 Larger scale simulations of FL Gulf Coast LL| SERDP

Agor-Chu, Muioz-Carpena, Kiker and Linvov. 2010. Environmental Modelling & Software (in review)
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* Take Home Message: Opportunities/challenges
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Thank you for your attention
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