Oil Spill Chemistry, Laboratory Analysis, and Field Screening

Dr. Anthony Bednar
Research Chemist
USACE ERDC-EL
11 August 2010
Outline

‘Historical’ efforts
- Initial work dates back to 2008
 - MVN, SPN – Both started as DOTS responses
 - Decades of experience with PAHs
 - More recently Alkylated-PAHs

Laboratory Analysis
- Methods
- Characterization of source and weathered oil
 - PAHs and Alkylated PAHs
 - GRO/DRO/ORO
 - Degradation/Photolysis

Field Analysis
- Portable GC-MS instruments
- Screening test kit / Demonstration
2008 Efforts

- 2008 Events
 - Oil spill in San Francisco Bay (December, 2007)
 - Initial ERDC response options included field portable GC-MS
 - Slow startup due to holidays and shipping instrument to CA
 - SPN used Pom-Poms
 - Lower MS River Barge Sinking
 - Same Field Instrumentation Response Option
 - Coupled to laboratory analysis of samples
 - Faster Deployment
 - In-Field ‘discovery’ of colorimetric oil determination
 - Subsequent laboratory optimization
 - Later developed into current fluorescence based method
Techniques

- GC-MS
 - Polycyclic Aromatic Hydrocarbons – 8270
 - Alkylated PAHs – 8272 / Modified 8270
 - Alkanes (C8 to 40) – Modified 8015
 - Volatiles (GRO, BTEX) – 8260

- GC-FID
 - Alkanes – 8015

- Other
 - Oil and Grease – 1664
 - Metals – 6020
Sample Analysis

- **Background**
 - Five Soil and Five water samples collected by ERDC/USGS
 - Very Low Levels or non-detects
 - <0.02 μg/L in water, 4.1-74 μg/kg Benzo (a) pyrene, Chrysene/Fluorene in 2 samples
 - Surface Oil Samples provided by MVN
 - Source Oil and weathered sample provided by MVN from BP
 - Alabama Geological Survey shoreline groundwater samples

- **Standard Analyte List**
 - GRO/DRO/ORO
 - PAHs, Alkylated-PAHs
 - Oil and Grease
Characterization

- South Louisiana Crude
 - Commercially available standard from Fisher Scientific
 - Compared to field collected samples provided by MVN

ALKANES

- MSC 252 Surface Oil S2
- South LA Reference Oil

PAHs

- MSC 252 Surface Oil S2
- South LA Reference Oil

ALKANES

- MSC 252 Surface Oil S3
- South LA Reference Oil

ALKANES

- MSRC 570 a1 Skimmer Oil (Weathered Oil)
- South LA Reference Oil

ALKANES

- MSC 252 Surface Oil S3
- South LA Reference Oil

PAHs

- MSC 252 Surface Oil S2
- South LA Reference Oil

PAHs

- MSRC 570 a1 Skimmer Oil (Weathered Oil)
- South LA Reference Oil
Fingerprinting Analysis

- Specific organic compounds/patterns
 - Aliphatic Hydrocarbons
 - PAHs and Alkylated-PAHs
 - Large Aromatics/Biomarkers
 - Dibenzothiophene
 - Hopanes
 - Steranes
 - LSU GC-MS analysis of South Louisiana Crude
 - Initial samples were a slightly weathered surface oil
Degradation

- Losses due to volatilization
 - Biological Degradation
 - Photolysis

Hexane Insoluble Residue After Photolysis

BP Source Oil After Photolysis

South La Oil After Photolysis
Characterization/Degradation

- **BP Crude**
 - Source Oil
 - UV Weathering
 - 6 hours, 300nm
Field-Portable GC-MS

- Originally Developed for Explosives

Analysis of 10 µg/L TNT in well water

10 µg/L TNT x 100x Concentration = 1000 µg/L TNT

Direct Push Well

500 mL sample of well water

Extracted using SPE Cartridge

Eluted off of SPE Cartridge using 5 mL solvent for analysis

HPLC Analysis of Lab Extracted Samples

Y = 0.94 * x - 0.00012

R² = 0.99

HPLC Analysis of Field Extracted Samples
2008 MS River Deployment

- Analysis of PAHs in Dredged Material
 - Laboratory based GC-MS is standard PAH analysis method
 - Samples taken during active dredging operations
 - Field instrument provides near real time analysis
2008 MS River Deployment

- Similar ‘laboratory’ set-up as field explosives analysis
 - Solids extraction by hexane using sonication
 - Liquid extraction by methylene chloride using separatory funnel
In-Field Analysis Comparison

- PAHs in Dredged Material
 - PAHs below action limits, allowed dredging to continue
Field Screening Test Kit

- Hexane extraction of oil produces colored liquid solution
 - Colorimetric screening for heavy oil
 - Extraction based on Method 1664, Oil and Grease (HEM)

ERDC Field Fuel Oil Screening Kit – 2008

Test vials containing hexane extraction solvent and drying agent, and example extract solution

Scoop and Spatula for measuring and mixing

Blank to 100 mg/L Calibration Solutions
Test Kit Modifications

- Modifications for ‘Light Sweet’ Crude – 2010
 - Fluorescence Detection
 - Field Fluorometer
 - 5 mg/L compared to 10 mg/L with heavy oil colored solution
 - Deployed by MVN and SAM in 2010
Test Kit Demonstration

- Standards from 5 to 1000 mg/L (and Blank)
 - Below 100 mg/L, Light Sweet Crude is not visible without fluorescence
 - Fluorescence is clear, particularly with little ambient light
- “Natural” Samples
 - Pond water and Indiana Harbor Sediment
Questions

Thanks