Oil Spill Chemistry, Laboratory Analysis, and Field Screening

Dr. Anthony Bednar
Research Chemist
USACE ERDC-EL
11 August 2010

Outline

- 'Historical' efforts
 - ▶ Initial work dates back to 2008
 - MVN, SPN Both started as DOTS responses
 - Decades of experience with PAHs
- Laboratory Analysis
 - Methods
 - ► Characterization of source and weathered oil
 - PAHs and Alkylated PAHs
 - GRO/DRO/ORO
 - Degradation/Photolysis
- Field Analysis
 - ► Portable GC-MS instruments
 - Screening test kit / Demonstration

2008 Efforts

- 2008 Events
 - ▶ Oil spill in San Francisco Bay (December, 2007)
 - Initial ERDC response options included field portable GC-MS
 - Slow startup due to holidays and shipping instrument to CA
 - SPN used Pom-Poms
 - ► Lower MS River Barge Sinking
 - Same Field Instrumentation Response Option
 - > Coupled to laboratory analysis of samples
 - Faster Deployment
 - In-Field 'discovery' of colorimetric oil determination
 - Subsequent laboratory optimization
 - > Later developed into current fluorescence based method

Techniques

- GC-MS
 - ► Polycyclic Aromatic Hydrocarbons 8270
 - ► Alkylated PAHs 8272 / Modified 8270
 - ► Alkanes (C8 to 40) Modified 8015
 - ► Volatiles (GRO, BTEX) 8260
- GC-FID
 - ► Alkanes 8015
- Other
 - ▶ Oil and Grease 1664
 - ► Metals 6020

Sample Analysis

- Background
 - ▶ Five Soil and Five water samples collected by ERDC/USGS
 - Very Low Levels or non-detects
 - <0.02 μg/L in water, 4.1-74 μg/kg Benzo (a) pyrene,
 Chrysene/Fluorene in 2 samples
 - Surface Oil Samples provided by MVN
 - ► Source Oil and weathered sample provided by MVN from BP
 - ► Alabama Geological Survey shoreline groundwater samples
- Standard Analyte List
 - ► GRO/DRO/ORO
 - ► PAHs, Alkylated-PAHs
 - ▶ Oil and Grease

Characterization

- South Louisiana Crude
 - ► Commercially available standard from Fisher Scientific
 - Compared to field collected samples provided by MVN

Fingerprinting Analysis

- Specific organic compounds/patterns
 - ► Aliphatic Hydrocarbons
 - ▶ PAHs and Alkylated-PAHs
 - Large Aromatics/Biomarkers
 - Dibenzothiophene
 - Hopanes
 - Steranes
 - ▶ LSU GC-MS analysis of South Louisiana Crude
 - Initial samples were a slightly weathered surface oil

Degradation

- Losses due to volatilization
 - ▶ Biological Degradation
 - ▶ Photolysis

Hexane Insoluble Residue After Photolysis

BP Source Oil After Photolysis

South La Oil After Photolysis

Characterization/Degradation

- BP Crude
 - ▶ Source Oil
 - ▶ UV Weathering
 - 6 hours, 300nm

Field-Portable GC-MS

Originally Developed for Explosives

2008 MS River Deployment

- Analysis of PAHs in Dredged Material
 - ► Laboratory based GC-MS is standard PAH analysis method
 - Samples taken during active dredging operations
 - ► Field instrument provides near real time analysis

2008 MS River Deployment

- Similar 'laboratory' set-up as field explosives analysis
 - ▶ Solids extraction by hexane using sonication
 - ► Liquid extraction by methylene chloride using separatory funnel

In-Field Analysis Comparison

- PAHs in Dredged Material
 - PAHs below action limits, allowed dredging to continue

Field Screening Test Kit

- Hexane extraction of oil produces colored liquid solution
 - ▶ Colorimetric screening for heavy oil
 - ► Extraction based on Method 1664, Oil and Grease (HEM)

ERDC Field Fuel Oil Screening Kit – 2008

Test vials containing hexane extraction solvent and drying agent, and example extract solution

Scoop and Spatula for measuring and mixing

Calibration Solutions

Test Kit Modifications

- Modifications for 'Light Sweet' Crude 2010
 - ► Fluorescence Detection
 - ► Field Fluorometer
 - 5 mg/L compared to 10 mg/L with heavy oil colored solution
 - ▶ Deployed by MVN and SAM in 2010

Test Kit Demonstration

- Standards from 5 to 1000 mg/L (and Blank)
 - ▶ Below 100 mg/L, Light Sweet Crude is not visible without fluorescence
 - ► Fluorescence is clear, particularly with little ambient light
- "Natural" Samples
 - ▶ Pond water and Indiana Harbor Sediment

Pond Water

Indiana Harbor- x2- x40

Questions

Thanks

