

Rapid Screening and Real Time Monitoring of Petroleum Hydrocarbons

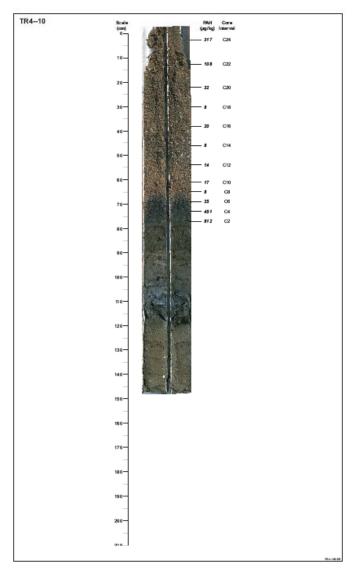
Marc A. Mills, PhD
USEPA-Office of Research and Development
National Risk Management Research Laboratory
Cincinnati, OH

Sediment coring with rapid screening and forensic chemistry

 Eagle Harbor, Washington to investigate freshwater upwelling through a capped layer above contaminated sediment. Funded by DOD-SERDP

Sediment/Cap Core Collection at Eagle Harbor, June 2006

Processing Core Tubes

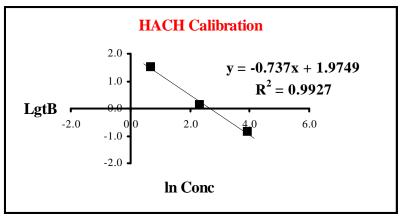


Split Core Tubes

ELISA Rapid Screening

- Rapid screening with the ELISA immunoassay method was used to measure total PAH concentrations in over 150 samples
- Inexpensive (<\$50/sample including labor), accurate within pre-defined data ranges, and offers fast turn-around (~4-hrs)
- Avoid missing PAHs or expending resources measuring non-detects in the cap
- Dr. Jim Leather (Navy, SPAWAR): experience and expertise in the sediment RSC assay—Dr. Leather's team refined the RSC analyses for PAH and PCB contaminants under a SERDP project

ELISA Rapid Screening


ELISA Rapid Screening

- Cores were cut into centimeter-thick segments and analyzed using the ELISA immunoassay analysis technique to characterize total PAH concentrations.
- Results were used to determine contamination profiles in sediment cores and to identify portions of sediment cores for detailed PAH and TPH analyses.
- Selected segments of cap material and native sediment were sent to Battelle's laboratory for detailed PAH chemistry.
- Additional cores were collected for UMBC studies

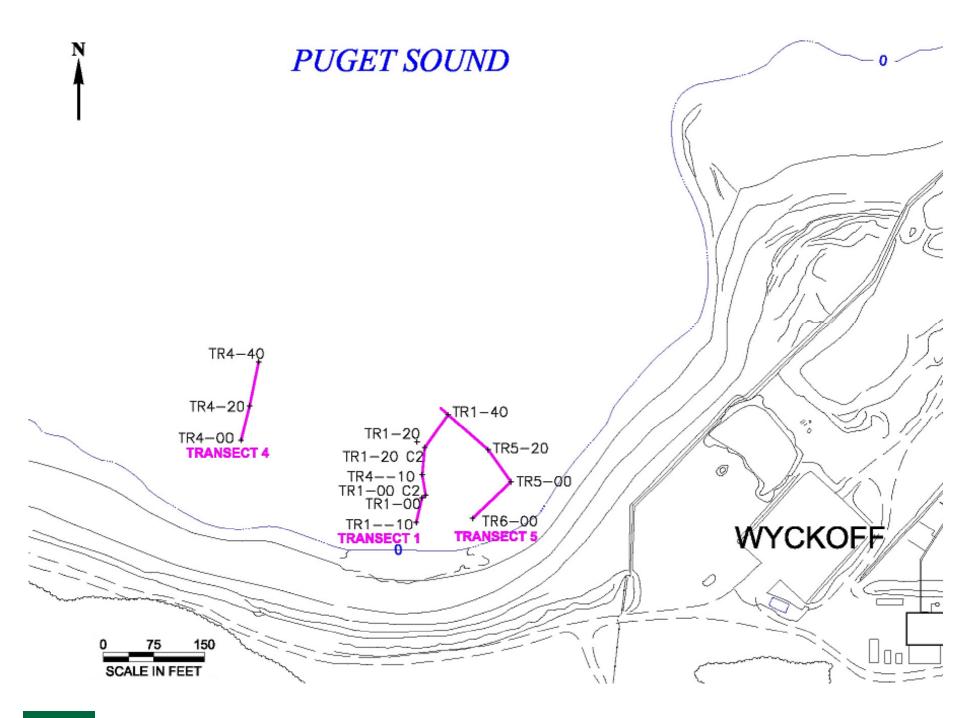
SEPA

Innuino Assay (IA) Method Calibration for PAHs Using a Direct-Reading (DR) Spectrophotometer [HACH]

LABEL ID	abs	X	conc	% recov	pah	pah corr
control [Phe]	0.559	3.23707	25.46	101.84%		
TR1 -10A C1	0.606	3.04969	21.11		33816	4734
TR1 -10A C2	0.936	1.73334	5.66		9067	1269
TR1 -10A C3	0.972	1.57304	4.82		7724	1081
TR1 -10A C4	0.949	1.67623	5.35		8563	1199
TR1 -10A C5	1.054	1.17606	3.24		5193	727
TR1 -10A C6	0.932	1.75075	5.76		9226	1292
TR1 -10A C7	1.019	1.35191	3.86		6191	867
TR1 -10A C8	0.940	1.71585	5.56		8909	1247
TR1 -10A C9	0.628	2.96327	19.36		31017	4342
TR1 -10A C10	0.356	4.14206	62.93		100818	14114
TR1 -10A C11	0.563	3.22094	25.05		40133	5619
TR1 -10A C12	0.326	4.29988	73.69		118052	16527
TR1 -10A C13	0.294	4.47983	88.22		141327	19786
TR1 -10A C14	0.505	3.45916	31.79		50928	7130
TR1 -10A C15	0.600	3.07338	21.61		34627	4848
TR1 -10A C16	0.647	2.88911	17.98		28800	4032
TR1 -10A C17	0.638	2.92419	18.62		29828	4176
TR1 -10A C18	0.838	2.14238	8.52		13649	1911
TR1 -10A C19	0.700	2.68352	14.64		23448	3283
TR1 -10A C20	0.762	2.44291	11.51		18433	2581
BL1-MeOH	1.444	#NUM!	#NUM!		0	0

x = ln (conc)

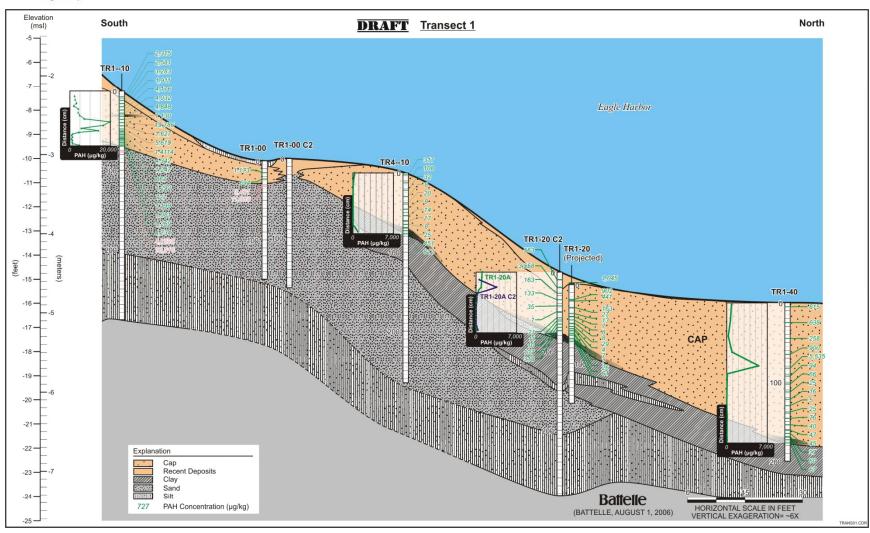
b = intercept


m = slope

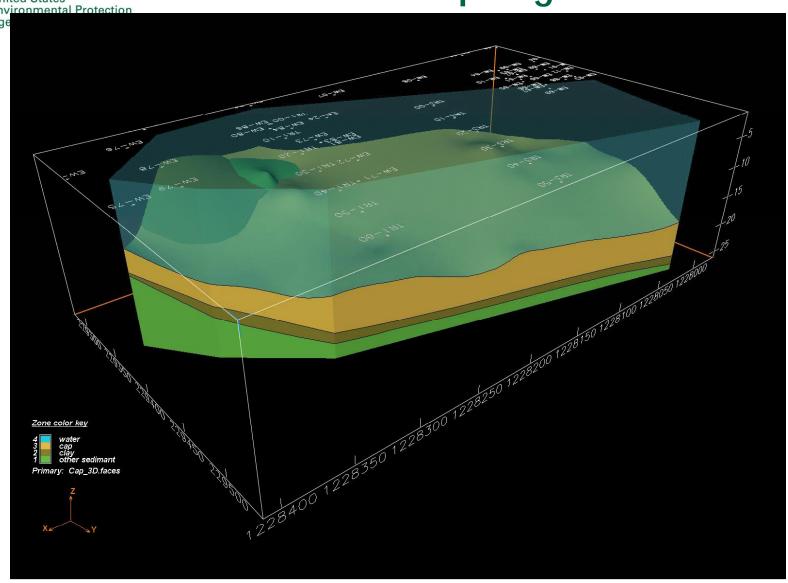
x = (y - b) / m

 $y = \ln (r/r_0)/(1-r/r_0)$

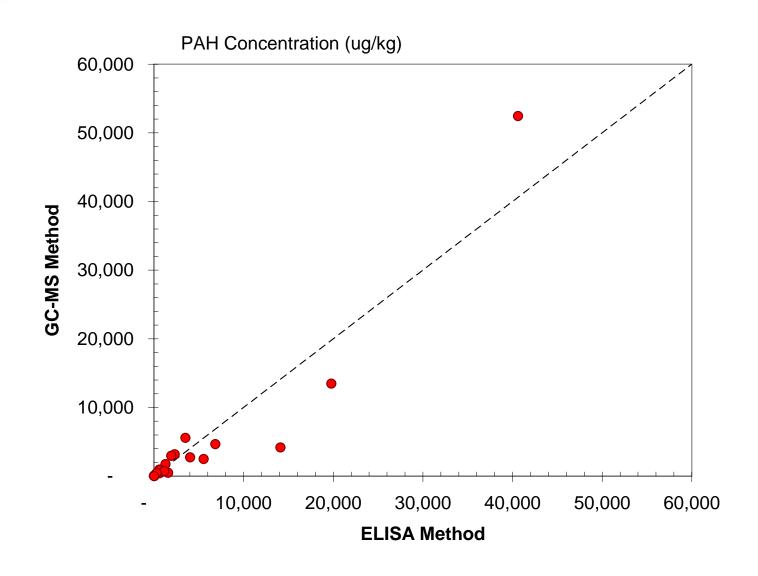
 $x = ((ln((r/r_0)/(1-(r/r_0)))-b))/m$


 $conc = exp(x) = exp(((ln((r/r_0)/(1-r/r_0))-b))/m)$

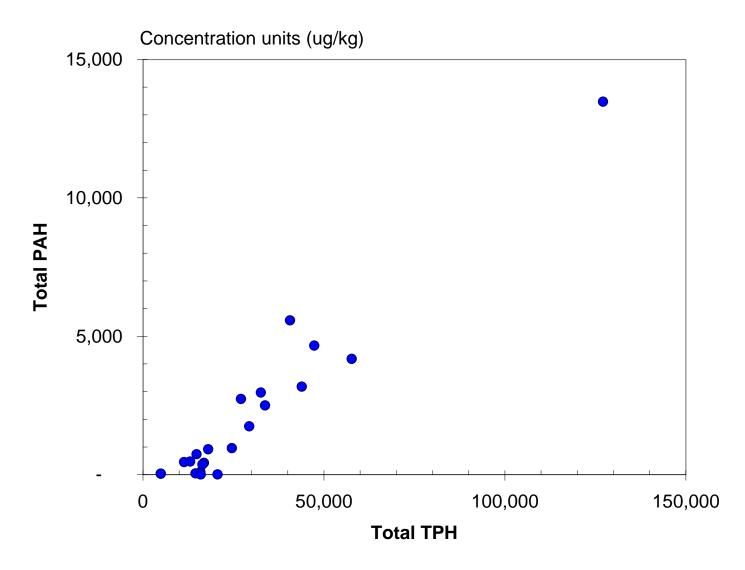
Total PAH Profile of Transect



1


3-D Model of Sampling Area

SEPA27 Segments Were Analyzed for United States Environmental Potential Brokenia Agency PAHs and Petroleum Hydrocarbons

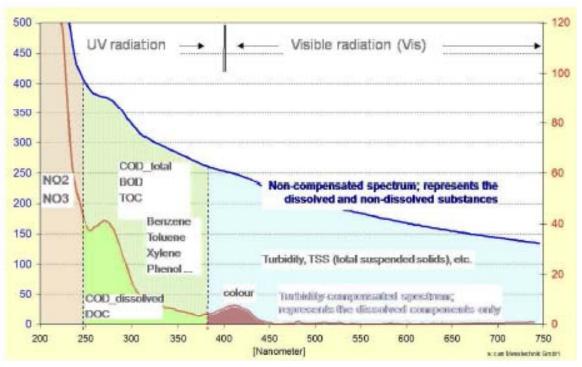

		TR5-(+)20A-C12	
		TR5-(+)20A-C14	TR5-00A-C10
TR1-(-)10A-C10		TR5-(+)20A-C18	TR5-00A-C14
TR1-(-)10A-C13	TR1-(+)40A-C12	TR5-(+)20A-C2	TR5-00A-C20
TR1-(-)10A-C16	TR1-(+)40A-C28	TR5-(+)20A-C22	TR5-00A-C24
TR1-(-)10A-C21	TR1-(+)40A-C20	TR5-(+)20A-C26	TR5-00A-C28
TR1-(-)10A-C6	TR1-(+)40A-C34	TR5-(+)20A-C4	TR5-00A-C4
TR1-(-)10A-N1	TR1-(+)40A-N1	TR5-(+)20A-N1	TR5-00A-N1

Results of ELISA Method are Consistent with those of the Fixed Lab Results of ELISA Method are One of the Fixed Lab

Total PAH is Proportional to Total TPH

Water Quality Monitoring Tools to Detect Hydrocarbon Contamination

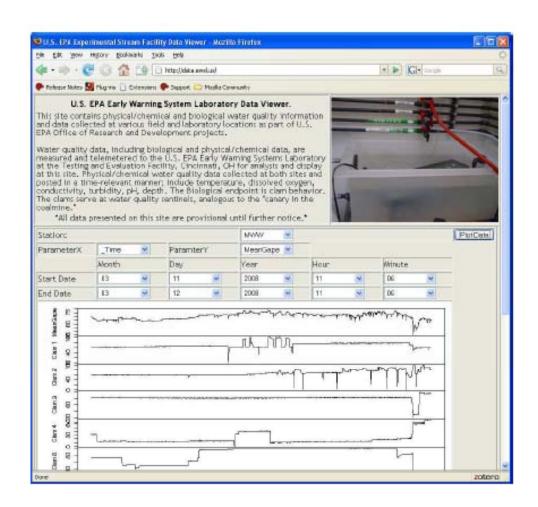
- Potential sensors for detecting changes in water quality (currently being used in research on water supply early warning)
 - Physical/Chemical Sensors
 - > S:Can UV/Vis Spectrometer
 - Organic carbon
 - Contaminants
 - Nutrients
 - > Multiparameter Sondes
 - On-line Toxicity Monitoring
 - Bivalve Gape/Behavior
 - > Bacterial Luminescence
 - > Fish Behavior/Mortality
- S:Can is the most promising for dredging related real-time monitoring but other approaches may be applicable from a broader WQ standpoint



S:Can Spectrolyzer

Advantages of S:Can

- Entire UV-Vis spectrum is measured. This provides endpoints such as:
 - > Hydrocarbons
 - BTEX
 - ***** TOC
 - DOC
 - Turbidity/Suspended Solids
 - > **H2S**
 - **≻ NO2-NO3**
- Profiling for temporal analysis
- Can be deployed quickly for immediate or long term monitoring
- No consumable reagents
- No calibration



Information Management and Dissemination

- Data from Ottawa River deployments are accessed via web-base GUI interface and are available for review/processing/actio n as soon as they are received
- Can also be obtained or accessed by direct SQL queries

Questions?