

1 91

Ecodynamic solutions for the protection of intertidal habitats

building with nature

Anneke Hibma Tom Ysebaert

Coastal erosion: a worldwide problem

- a serious threat along many coastlines
- will increase due to human-induced changes and climate change (sea level rise, increased storminess)

Amsterdam

Netherlands

(Bruxelles) -Brussel

- Oosterschelde (SW Netherlands)
 - Fast erosion of tidal flats due
 - to infrastructural works

Oosterschelde

<u>"Sandhunger" Oosterschelde</u>

Consequences for nature and safety

- Loss of intertidal foraging habitats for birds and resting areas for seals
- Loss of protecting foreland (mudflats, marshes) for dikes

Building with Nature solutions

Short and medium term solutions:

Stabilize intertidal areas

Sand nourishments for maintaining tidal flats

 Coastal protection by applying the concept of ecosystem engineers

Long term solutions: sand import

Nourishment Galgeplaat

Morphological monitoring

Hydrodynamic monitoring

Monitoring mussel beds

argus-data.wldelft.nl/sites/galg/2009

building with nature

EcoShape

building wit

EcoShape

Nourishment strategies

- Locations
- Shape
- Volumes
- Frequency

Building with Nature solutions

Short and medium term solutions:

Stabilize intertidal areas

- Sand nourishments for maintaining tidal flats
- Coastal protection by applying the concept of ecosystem engineers

Long term solutions: sand import

Ecosystem engineering

- EE = "modification of the abiotic environment by biological activity" (Jones et al. 1994)
- biologically mediated modification of the abiotic environment has a major impact on the structure, function, and biodiversity of a wide range of ecosystems

Ecos.

The concept of ecosystem engineers

Coastal protection by applying the concept of ecosystem engineers

Ecosystem engineers such as reef building oysters can protect tidal flats from erosion, reduce wave energy, trap sediment, ...and protect dikes

The use of ecosystem engineers in EDD

the use of ecosystem engineers is successful when they are self-sustainable and stabilize tidal flats => artificial oyster reefs seem promising as substrate

Pilot Ecosystem engineers

 testing of different materials and cages in smallscale experiments => use of gabions most promising
 Small scale pilot June 2009: gabions filled with oyster shells

Small-scale pilot: elevation changes

Detailed height measurements along transects

Small-scale pilot: elevation changes

Sedimentation behind reefs

Transect 2 (closed reef)

Small-scale pilot: shell stability

Movement of oyster shells inside artificial reefs

Small-scale pilot: settlement of oyster

larvae

Small scale pilot: summary

- Promising results with small artificial oyster reefs after one year:
- Gabions with oyster shells are stable structures
- Local sedimentation and reduced erosion observed behind reefs, surrounding tidal flat further eroding (± 2cm)
- Oyster larvae settle and grow on artificial reef

Upscaling 2010: large scale pilot Large scale pilot with three reefs of 200 x 10 meters

First attempts with harness

Adopted methodology

Adopted methodology

Adopted methodology

Each reef: 400 m³, ± 230 tons of oyster shells

Monitoring programme

- Reef stability, oyster shell stability, algal coverage,
- Oyster recruitment, survival and growth
- (Hydro)morphological and ecological impact on tidal flat

building with nature

A combination of measures

 Cascade of ecosystem engineers

Cascade of ecosystem Nourishment of tidal flats

4 x 50' fixed HD Argus cam

Building with Nature is Building our Future

Thank you for your attention!

www.ecoshape.nl

De building with nature

More ecosystem engineers in BwN

programme:

Sea grass

Mangroves

building with nature

Biogeomorphic succession of mangroves PhD research: Thorsten Balke

building with nature

Flume tests on early establishment

35