OPEN WATER PLACEMENT AND CAPPING
- SITE MANAGEMENT AND CONTROLS

Susan E. Bailey
US Army ERDC, Vicksburg, MS
Susan.E.Bailey@usace.army.mil
Implemented controls should be commensurate with potential risk…
Open Water Placement
Risk Management Considerations

• Material Suitability
• Site Characterization
• Site Designation/ Selection
• Operational Considerations
• Design Evaluations
• Control Measures/ Management Actions
• Site Management Plan
• Monitoring
Material Suitability

• Is proposed dredged material suitable for open water placement at the site without special management or controls?
 - Contaminant impacts
 - MPRSA via OTM procedures
 - CWA via ITM procedures
 - Physical impacts
 - MPRSA sites via site designation
 - CWA sites project specific
Site Characterization

- Bathymetry
- Water depth/ stratification
- Current/ wave conditions
- On-site biological resources
- Proximity to sensitive resources
Site Designation/Selection

- **Ocean Site Designation (MPRSA)**
 - Formal Designation Process
 - EPA Designated General Use (Section 102)
 - USACE Designated Specific Projects (Section 103)
 - Final and Interim Designations

- **Site Selection in US Waters (CWA)**
Operational Considerations

- Equipment and placement techniques
- Time, rate, location, and methods of placement
- Quantity and frequency of materials placed
- Navigation and positioning
- Site controls, e.g. Buoys
- Coordinating site use among permit holders
- Monitoring
Placement Methods

Hopper, NY Mud Dump

Denny Way CSO

Submerged Diffuser

One Tree Island Marina

Tools to Evaluate Effectiveness

- **Water Column Dispersion**
 - STFATE or CDFATE or others

- **Placement technique, location, and rate**
 - Mound Development ~ MDFATE / MPFATE

- **Long-Term Stability and Site Capacity**
 - Consolidation ~ PSDDF
 - Erosion/ Consolidation ~ LTFATE

- **Far Field Transport ~ TABS, ICM, PTM**
Site 69b, TSS
Open Water Control Measures

• Water Column Management
 ➢ Submerged discharge
 ➢ Silt Curtains
 ➢ Geocontainers
 ➢ Treatment (polymer addition)
 ➢ Reduce discharge rate
 ➢ Promote mixing (dump while under tow)

• Benthic Management
 ➢ Treatment (not typically done)
 ➢ Lateral confinement or CAD
 ➢ Capping with cleaner dredged material or armor
 ➢ Geocontainers
Operational Modifications

• Select different equipment type
• Select different equipment size
• Control placement operation
 - Location
 - Rate
 - Method
STFATE Evaluation of Alternatives
3000 CY Barge – Single Dump

Peak Lead Concentrations

Violation of WQS outside the mixing zone

WQS = 0.032 mg/L
STFATE Evaluation of Alternatives
1500 CY Barge – Single Dump

Peak Lead Concentrations

No violation of WQS outside the mixing zone

WQS = 0.032 mg/L
STFATE Evaluation of Alternatives
3000 CY Barge – Spreading

Peak Lead Concentrations

No violation of WQS outside the mixing zone

WQS = 0.032 mg/L

Max Conc on Grid
Max Conc Outside M.Z.
M.Z. Standard

Dredged Material Assessment and Management Seminar
24-26 May 2011, Jacksonville, FL
Submerged Discharge

- Can reduce water column dispersion
- Can improve accuracy of placement
- Pipeline configurations
- Diffuser design available
- Tremie technology

Barge with Tremie

Submerged Diffuser
Silt Curtains

• **Purpose**
 - To control SS/turbidity in the water column (mainly at dredging site)

• **Advantages**
 - Can be used to protect sensitive environments
 - Can allow particles to settle out of the upper water column
 - Commercially available

• **Limitations**
 - Strong currents
 - (> 1 knot/1.5 fps)
 - High winds
 - Debris/Ice
 - Excessive wave heights
 - Fluctuating water levels
 - Must allow traffic in/out
 - Bubble curtains

Silt Curtains

White or Yellow Float Collar

Monofilament or Impermeable Vinyl Curtain

Brass Grommets

Optional 5/16" Chain curtain ballast

Silt Curtain

Float

PIPELINE

TURBID WATER

FLOCCULATED MATERIAL

SILT CURTAIN

CURRENT

FLUID MUD

BOTTOM SEDIMENT

EFFECTIVE SKIRT DEPTH

Dredged Material Assessment and Management Seminar
24-26 May 2011, Jacksonville, FL
Geo-containers

- Geotextiles used for solids containment
- Can reduce water column dispersion
- Can reduce capping requirements
- Engineering design approaches available
- Operational aspects need refinement
Purpose - Manage risks from contaminated material by:

- **Physical isolation of contaminants**
- **Reduction of contaminant flux**
- **Physical stabilization**
 - Limiting losses during placement
 - Reducing mobilization and erosion
CAD Approaches

- **Existing Pits/Fills or Excavated Pits** – (most stable)
- **Lateral Confinement**

![Confined Aquatic Disposal](image1)

- **Mounds**
- **In Situ Capping**

![Level Bottom Capping (LBC)](image2)
Capping Considerations

• Placement and design of constructed cells

• Placement techniques for unsuitable material
 ➢ Controlled, accurate

• Placement techniques for cap material
 ➢ Even coverage
 ➢ Avoid displacing unsuitable material

• Cap design – account for:
 ➢ Erosion
 ➢ Bioturbation
 ➢ Recolonization
 ➢ Consolidation
 ➢ Contaminant transport
 ➢ Operational factors
Cap Design Specifications

• Cap thickness designed to prevent breach from:
 - Props
 - Anchors
 - Fishing trawlers/nets
 - Storm waves
 - Flood currents

• Materials
 - Erosion control – armor, cohesive
 - Contaminant control
 - Habitat

Example Cap Design

12” GRADED ARMOR STONE
GEOTEXTILE FABRIC
20” SAND MATERIAL
SEDIMENT
BEDROCK
Capping Materials

- Granular Materials
 - Sediments
 - Soils
 - Quarry run materials

- Fabrics, Membranes and Specialty Materials

- Armor Stone

- Amendments
 - Adsorbents
 - Reactants
Cap Processes

- **Physical**
 - Erosion and armoring
 - Deposition
 - Consolidation
 - Mixing and disruption

- **Chemical**
 - Diffusion
 - Advection/Convection
 - Biotic Degradation
 - Abiotic Degradation
 - Adsorption/Retardation
 - Volatilization/Stripping by Gas Transport

- **Biological**
 - Recolonization
 - Bioturbation

Conceptual Illustration of Bioturbation Activity vs. Sediment Depth
Recovery/Cap Model

- Long term effectiveness evaluations
Cap Placement Methods

Eagle Harbor

Baffle Plate on MS River

Sprayed slurry system placing sand at Soda Lake, WY

Simpson-Kraft Sand Box

Sand Spreader Barge
Capping Guidance

- **USACE guidance for DM capping**

- **EPA (ARCS) guidance for ISC**
 - http://www.epa.gov/glnpo/sediment/iscmain/index.html

References and Other Resources
Site Management Plans

- Roles and responsibilities
- Management objectives
- Specifics on operations and management
- Inspection and enforcement
- Monitoring requirements
LA-3 Ocean Dredge Material Disposal Site

Estimated barge location at initial dump point:
offset from tug by 250 feet
at 25 degrees azimuth

Note: The coordinates for trips #667, and #1116 are outside of the map extent.

LA-3 center coordinates:
33°31'42" N 117°54'48" W

Mis-identified dump target:
33°31'25" N 117°54'29" W

Trips 1-975 Trips 976-1238
- <1000 feet - <1000 feet
- >1000 feet - >1000 feet

100 200 400 600 800 1000 Feet

Cartography by: Tally Cleveland, Ahlton Corp. 10/14/29

EPA
Region 3 GIS Center
Open Water Site Monitoring

- **Need for Monitoring**
 - Evaluate effectiveness of management
 - Evaluate environmental impacts
 - Recommend modifications

- **Monitoring Plan**
 - Clear objectives
 - Testable hypotheses
 - Methods and equipment

- **Management Actions**

- **Silent Inspector**
 - Location
 - Volume
Maintenance and Rehabilitation

• Assess findings to establish needs by comparing with performance predictions, considering natural processes
 ➢ If in agreement or better, adapt monitoring plan to findings
 ➢ If contradicts predictions, determine processes of interest
 ➢ Perform process-based confirmation monitoring
 ➢ Determine maintenance and rehabilitation needs

• Maintenance: Restores performance in response to extreme events

• Rehabilitation: Upgrades performance to achieve long-term performance goals
Open Water Monitoring Tools
Summary

• Site selection / characterization
• Material suitability
• Planning the disposal operation
 ➢ Models available
• Site controls
• Site management plan
• Monitoring
Questions??