Design and Management of CDFs

Effluent and Runoff Quality Assessment

Susan Bailey
US Army ERDC, Vicksburg, MS

Susan.E.Bailey@usace.army.mil
Topics

- Regulatory definition & requirements
- Environmental concerns
- Tiered approach
- Testing & Modeling
- Controls
- Recap
“...the term ‘discharge of dredged material’ ... includes... the runoff or overflow from a contained land or water disposal area...”
CWA Regulatory Provisions

- **Water Quality Standards**
 - Adopted per 40 CFR 131
 - Narrative or numeric criteria
 - Dissolved or total concentrations

- **Initial Mixing**
 - As per 40 CFR 230.3(m)
 - Normally expressed as a distance from point of discharge or area around the discharge
Conceptual Model - Contaminant Pathways

Birds/Wildlife

Precipitation

Volatilization

Surface Runoff

Air Quality

Dike

Plant/Animal Uptake

Unsaturated

Saturated

Seepage

Infiltration

Leachate

Effluent

Ground Water

SURFACE WATER
Characteristics

Effluent vs. Runoff

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Effluent</th>
<th>Runoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occurrence / Duration</td>
<td>Continuous discharge during disposal & initial dewatering</td>
<td>Discrete events throughout life of facility</td>
</tr>
<tr>
<td></td>
<td>Weeks to months</td>
<td>Hours to days</td>
</tr>
<tr>
<td>Flow Rate</td>
<td>Dredge discharge rate for hydraulic dredges</td>
<td>Depends on rainfall intensity, duration, CDF area and site management</td>
</tr>
<tr>
<td></td>
<td>Minimal effluent flow rate if mechanically dredged</td>
<td></td>
</tr>
<tr>
<td>Characteristics</td>
<td>TSS < 100 mg/L for estuarine or < a few g/L for freshwater</td>
<td>TSS dependent on holding time, 100 mg/L to a few g/L</td>
</tr>
<tr>
<td></td>
<td>Dissolved contaminants in equilibrium with influent slurry of 70 to 250 g/L unoxidized DM</td>
<td>Dissolved contaminants in equilibrium with runoff slurry of 0.5 to 15 g/L unoxidized DM or 0.05 to 3 g/L oxidized DM</td>
</tr>
<tr>
<td></td>
<td>Total contaminant is a function of TSS and contaminant concentration of fines</td>
<td>Total contaminant is a function of TSS and contaminant concentration of fines</td>
</tr>
</tbody>
</table>
Tiered Approach

- Tier 1 - Existing information
- Tier 2 - Partitioning (screening assessment)
- Tier 3 – Testing

<table>
<thead>
<tr>
<th>Contaminant Evaluations</th>
<th>Effluent</th>
<th>Runoff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Column Settling Test</td>
<td>SLRP chemistry</td>
</tr>
<tr>
<td></td>
<td>EET chemistry</td>
<td>RSLS chemistry</td>
</tr>
<tr>
<td>Toxicity</td>
<td>EET toxicity</td>
<td>SLRP/RSLS toxicity</td>
</tr>
</tbody>
</table>

- Tier 4 – Case specific studies
CDF Effluent
Supernatant Water Interactions
Basis of Effluent Quality Predictions

• Partitioning
 - Theoretical (screening spreadsheets)

• Testing
 - Contaminant mobilization - Modified Elutriate
 - Sedimentation – Column Settling
 - Total = Dissolved + Particle Associated

• Unoxidized conditions
Modified Elutriate Test

1. Mix sediment and water to expected influent concentration

2. Aerate in 4L cylinder for 1 hr

3. Settle for expected mean field retention time up to 24 hr maximum

4. Extract sample and split

5. Centrifugation or 0.45μm filtration

- Water from dredging site
- Sediment
- Suspended Solids Determination
- Chemical Analysis Total Concentration
- Chemical Analysis Dissolved Concentration
Modified Elutriate Test Setup
Extraction of Elutriate
Column Settling Test

- **Column**
 - 8-in diameter, > 6-ft tall
 - Ports every 6 in.

- **Fill column with slurry at expected influent solids concentration**
 - $C_{sl} = \% Fines + (3 \times \% Coarse)$

- **15 day test**
 - Sample supernatant TSS
 - Record interface height

- **Predict rate of settling and effluent TSS**
 - SETTLE model
Effluent Toxicity Evaluation

- Effluent elutriate used as test medium
- Procedure same as for open water
 - Expose test organisms to dilution series of whole effluent elutriate
 - Must be sufficiently clear for organisms to be visible
 - End result is LC50 or EC50 expressed as percentage of original effluent elutriate concentration
 - Detailed procedures in ITM
- Compare with effluent concentration at the boundary of the allowable mixing zone
 - Must not exceed 0.01 of LC50 or EC50
ADDAMS Effluent Quality Modules

• SETTLE
 - CDF sizing for storage and effluent TSS

• EFQUAL
 - Reduction of modified elutriate data
 - Determine COC
 - Water quality standards compliance
 - Dilution requirements

• LAT-E
 - Analysis of water column bioassay test to determine toxicity (LC50) of CDF effluent

• EFFLUENT
 - Windows version of the above two modules
CDF Surface Runoff Process

Discharge → Ponded → Evaporation → Runoff → Transpiration

Leaching

Dredged Material Assessment and Management Seminar
24-26 May 2011, Jacksonville, FL
Basis of Runoff Water Quality Predictions

- **Partitioning**
 - Theoretical (screening spreadsheets)

- **Testing**
 - SLRP/RSLS

- **Total and Dissolved**

- **Oxidized and Unoxidized Conditions**
 - Unoxidized analysis may not be necessary
Simplified Laboratory Runoff Procedure (SLRP) Wet Sediment

- 3 gal sediment
- Common laboratory equipment
- Dilute to representative TSS
- Agitate for one hour
- Analyze contaminant concentrations
 - Filtered for soluble
 - Unfiltered for total
Field SS Measurements

<table>
<thead>
<tr>
<th>Sediment (mg/L)</th>
<th>SS, Wet</th>
<th>SS, Dry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana</td>
<td>6600</td>
<td>56</td>
</tr>
<tr>
<td>Black Rock</td>
<td>10326</td>
<td>167</td>
</tr>
<tr>
<td>Everett</td>
<td>6900</td>
<td>1000</td>
</tr>
<tr>
<td>New Bedford</td>
<td>7730</td>
<td>268</td>
</tr>
<tr>
<td>Oakland Inner</td>
<td>4447</td>
<td>1686</td>
</tr>
<tr>
<td>Oakland Outer</td>
<td>9140</td>
<td>970</td>
</tr>
<tr>
<td>Pinole Shoal</td>
<td>1500</td>
<td>618</td>
</tr>
<tr>
<td>West Richmond</td>
<td>3290</td>
<td>2340</td>
</tr>
<tr>
<td>Santa Fe</td>
<td>6240</td>
<td>2130</td>
</tr>
</tbody>
</table>
SLRP SS Concentrations

SLRP-Wet Concentrations

- 50, 500, 5000 mg/L

SLRP-Dry Concentrations

- 500 mg l\(^{-1}\), 5000 mg l\(^{-1}\), 50,000 mg l\(^{-1}\)
SLRP - Dry Sediment

- Air dry to < 5% moisture and grind
- Oxidize with H_2O_2, dry and regrind
- Re-slurry at TSS 50, 500, 5,000 mg/l, agitate and extract
- Analyze for total and dissolved contaminants
SLRP Procedures

Unoxidized (Wet)

Sediment

DI Water

50 mg/L
500 mg/L
5000 mg/L
50,000 mg/L

Agitate 1 hr

Filter

Dissolved
Chemical Analysis

Total Chemical
Analysis

TSS Analysis

Oxidized (Dry)

Sediment

Air dry
Grind

Dried Sediment

Add H₂O₂
Dry, Regrind

Oxidized Sediment

Dried Sediment

50 mg/L
500 mg/L
5000 mg/L

Agitate 1 hr

Split
Sample

Filter

Dissolved
Chemical Analysis

Total Chemical
Analysis

TSS Analysis

1For Nutrients/Organics; 2For Metals

Dredged Material Assessment and Management Seminar
24-26 May 2011, Jacksonville, FL
SLRP Predicted Copper

![Graph showing concentration of copper versus suspended solids](image-url)
Rainfall Simulator/Lysimeter System (RSLS)

- 600 gal sediment from dredging site
- Specialized equipment
- Conduct test on wet sediment (unoxidized) first
- Allow sediment to dry 6 months, then repeat test on oxidized sediment
RSLS Test Equipment

SYSTEMS FOR EVALUATING CONTAMINANT LOADINGS DURING STORM RUNOFF
RSLS Test Specifics

• **Rainfall**
 - 5.08 cm/hr (2 in/hr)
 - 30 min event
 - 3 events on consecutive days

• **Sample**
 - Runoff rate - every minute
 - pH, TSS, EC
 - Every minute up to 15 min, then every 5 min
 - Chemical analysis
 - composite of 5, 15 and 25 min after runoff begins
 - dissolved and total

• **Can modify test to match site-specific conditions**
Runoff Toxicity Evaluation

- Simulated runoff from SLRP or RSLS used as medium
 - Whole water (not filtered)
 - Sufficiently clear for organisms to be visible

- Procedure same as for open water
 - Expose organisms to dilution series of test medium
 - End result is LC50 or EC50, expressed as percentage of original simulated runoff concentration
 - Detailed procedures in ITM

- Compare with runoff concentration at boundary of allowable mixing zone
 - Must not exceed 0.01 of LC50/EC50 (or NOEL/LOEL)
ADDAMS Runoff Quality Programs

• RUNQUAL
 - Compares predicted runoff WQ with standards
 - Determines COC
 - Dilution requirements

• LAT-R
 - Analysis of water column bioassay test to determine toxicity (LC50) of CDF runoff

• RUNOFF
 - Windows version of the above two modules
Schematic of a Mixing Zone for a Single Effluent Source
CDF Effluent Mixing Models

<table>
<thead>
<tr>
<th>Model/Technique</th>
<th>Hydrodynamics</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution Volume</td>
<td>Steady Uniform</td>
<td>General</td>
</tr>
<tr>
<td>MacIntyre</td>
<td>Steady Uniform</td>
<td>Riverine</td>
</tr>
<tr>
<td>CDFATE (CORMIX)</td>
<td>Steady Uniform</td>
<td></td>
</tr>
<tr>
<td>TABS</td>
<td>Unsteady Nonuniform</td>
<td>Tidally influenced Rivers & Estuaries</td>
</tr>
</tbody>
</table>
Contaminant Controls

• TSS & Particulate Associated Contaminants
 - Operational modifications – retention time
 - Filtration
 - Chemical flocculants
 - Engineered controls – vegetation, capping

• Dissolved
 - Treatment
 - Carbon adsorption
 - Ion exchange
 - Chemical or UV oxidation
 - Biological
Polymer Addition
Filter Cell
Runoff SS Controls

Suspended Solids, mg/l

Time, minutes

Veg
Detritus
Bare

ERDC

Dredged Material Assessment and Management Seminar
24-26 May 2011, Jacksonville, FL
Summary

- **EFFLUENT**
 - Tier II Screening
 - Column settling
 - Modified elutriate
 - Accurate
 - Relatively inexpensive
 - Generally conservative
 - Controls
 - Operational
 - Treatment

- **RUNOFF**
 - Tier II Screening
 - RSLS
 - Time and material intensive
 - SLRP
 - Rapid
 - Conservative

- **Controls**
 - Operational
 - Treatment
 - Engineered