DOER Sediment and Dredging Processes (SDP) Focus Area

Dr. Joseph Z. Gailani

Research Hydraulic Engineer Engineering Research and Development Center U.S. Army Corps of Engineers

Jacksonville, FL 24-26 May 2011

US Army Corps of Engineers BUILDING STRONG®

Scheduled Unscheduled Unscheduled Mechanical Breakdo

SDP Focus Area Objectives

- <u>Situation</u>: The USACE dredging community is changing the way it does business. New challenges are posed by fiscal/manpower limitations, dredging cost increases, the goal of sustainable dredging and beneficial use, and evolving environmental standards. These issues must be addressed in a timely, cost-effective manner.
- <u>Barriers</u>: Limited understanding of and experience with potentially advantageous technologies and sediment handling methods limit USACE options to address these challenges and meet project budget/schedule.
- <u>Solution</u>: These limitations, which hinder application, can be addressed by targeted research studies
 - Identify or develop innovative operations and sediment handling technologies that may be beneficial to USACE
 - Test these new technologies in locations and situations suitable to evaluate performance in terms of defined metrics
 - Facilitate implementation of well-performing technologies into Operations and Planning
 - Demonstrate potential for benefits from dredged sediment

SDP and DMM Products Everything is Connected!

Process Studies

- Wave/current erosion
- Sediment- Fluid Interactions
- ► Settling Velocity
- ► Sedimentation

- Far Field Models
 - ► PTM
 - ► LTFATE
 - Sediment Budgets
 - SMS Tools for exposure

DMMP, Feasibility **Studies**

Wave-Induced Erosion Processes for Dredged Material Mounds

- Problem
 - Dredged material mounds eroded by wave action
 - Existing wave/current erosion equations for cohesive sediment are insufficient
 - Poor predictive capabilities
- Objective
 - Develop site-specific measurement methods for wave/current erosion
 - Develop parameterization methods for existing erosion algorithms
 - Investigate "enhanced" erosion potential due to waves

- Extensive laboratory testing of SEAWOLF flume
- Compare wave/current erosion to steady state erosion for controlled sediment samples
- Develop algorithms for
- 4 wave/current erosion

Dredge Plume Settling Dynamics

5

Problem

- Dredge turbidity/TSS are a regulatory/environmental issue
- Fate of suspended DM dependent on settling velocity
- Aggregation/flocculation will influence settling

Objective

- Develop field deployable instrument to quantify settling of various sediment types found in dredge plumes
- Methods to incorporate these data into predictive models

- Approach
 - Particle Imaging Camera System (PICS) for deployment in plumes
 - Data analysis tools to measure all sediment settling
 - Guidance/algorithms for DM settling

Sediment-Fluid Interactions

6

- Problem
 - Dredge turbidity/TSS are a regulatory/environmental issue
 - Fate of suspended DM dependent on interactions between sediments and fluid
 - Settling velocity/flocculation is time dependent
 - Objective
 - Develop flocculation algorithms that are timedependent for dredged material plumes
 - Evaluate/demonstrate algorithms in FATE models

- Field measurement using PICS
- Quantify flocculation rates for hopper and mechanical dredge plumes
- Develop algorithms as function of time and conc.

Dredging Residuals Density and Fluid Mud Profiling Survey System

Problem

- Current methods to characterize dredging residuals inefficient.
- No standardized USACE method to survey residuals/fluid mud.
- This measurement paucity has hindered effective management of environmental dredging and fluid mud dredging projects
- Objective
 - Improve USACE capability to more accurately and precisely characterize fluid mud/dredging residuals
 - Produce an increased resolution density probe that doesn't require calibration.

Approach

 Leverage funding with EPA to develop high resolution, non-nuclear density probe

Fine-Scale Sedimentation from Dredge Sources

Problem/Purpose

- Environmental effects related to small-scale deposition of DM
- This scale cannot be measured with existing survey equipment
- Therefore, models are unverified small-scale sedimentation

Objective

 Evaluate and demonstrate commercially available systems for measuring sedimentation (Sedimeter) on fine (~1 mm) vertical scale

- Review literature available on Sedimeter and other devices
- Laboratory evaluation
- Field Demonstration

Open Water Pipeline Placement Dynamics

9

Problem

- Pipeline placement results in increased turbidity, burial, blockage of light, sediment toxicity
- Dynamics of fine-grained sediment placement are poorly understood
- Objective
 - Characterize transport and deposition patterns of fluid mud turbidity during continuous discharge through laboratory experiments
 - Develop predictive algorithms for FATE models

- Approach
 - Series of laboratory experiments for pipeline placement
 - Develop algorithms that are function of time and sediment composition

Sediment Management to Reduce Dredging

Problem

- Channels act as sediment traps
- We are generally fighting against nature
- Can we work with nature to reduce dredge volumes and address funding and capacity limitations?

Objective

 Investigate one or more emerging methods for managing sediment transport using natural forces (or harvesting sediment) to reduce dredge volumes

- Select one or more key projects for additional monitoring and "lessons learned" that can be applied to other Corps sites
- Possible collaboration with LaCPR

Fine Grained Sediment Budgets for Regions with Navigation and Dredging

- Problem
 - Dredging produces an exposure pathway
 - Risk from exposure to dredged material must be quantified
 - Actual risk can only be addressed within context of all exposure pathways and associated risk
- Objective
 - Develop methods for building fine grained sediment budgets that include all sources to receptors
 - Demonstrate sediment budget methods through site application

- Approach
- Develop methods to Identify/quantify finegrained sediment sources
 - Discharge (rivers, CSOs, etc)
 - Current/wave resuspension
 - Ships, dredging, other operations
- Develop budget framework to quantify overall exposure
- 11 Develop methods for design alternatives

Open Lake and Bay Dredged Material Placement

Problem

- DM suitable for open water placement if often placed in CDFs or far offshore due to precedent
- CDF capacity limited
- Stakeholders (States) are concerned about providing permits for lakes/bays

 Develop and demonstrate
methods to quantify impacts from all aspects of open lake/bay placement (sedimentation, turbidity, chemistry, habitat, toxicity)

Approach

 Work with State and other regulatory agencies to develop robust, defensible methods to address permitting issues

Dredge Plume Evolution

Dredge

Problem

- Dredge turbidity/TSS are a regulatory/environmental issue
- Dredge TSS data are sparse
- Data collection complex due to temporal/spatial variability

Objective

 Improve sampling analysis protocol for field through understanding of relevant processes Approach

 Assess dredged material release in laboratory setting

esd (µm)

Sampling

binavg: floc binavg: bedagg

Vessel

- Improve sampling analysis protocol for field
- Test, refine, and demonstrate new protocol
- Develop source term algorithms

Nearshore and Wetland Placement Tools

Problem

- WwN, BU, RSM, and sustainable solutions will require placement of DM in complex environments
- Lack of understanding of how DM transports through these environments

Objective

- Develop guidance documents and tools for placement in nearshore and wetland locations
- Methods to optimize natural distribution of DM in these environments

- Approach
 - Work with LaCPR and others to assess success and issues with ongoing projects
 - Use ongoing field studies in conjunction with DOER research to develop guidance and tools

SMS Framework for DMM Tools

Problem

- DMM tools have no common interface or interconnectivity
- Presently, it is complex and time consuming to transfer data between tools
- This results in less use of tools
- Objective
 - Incorporate dredging models and tools into SMS
 - Integrate dredge models with other USACE large domain models
 - Integrate dredge models with SMS data sources

Approach

15

- PTM and LTFATE in SMS
- Near-field FATE models in SMS
- GIS data for DM models
- Workshops/Tech transfer

Models for Dense Fluid Dynamics

Problem

- Current models for placement dynamics are idealized and limited in breadth of application
- Cannot address increasingly complex Corps applications with these models

Objective

 Develop new generation of placement models for discrete and continuous discharge (barge and pipeline placement)

- Approach
 - Investigate existing models
 - Literature review
 - Develop new 2-phase flow algorithms
 - Validation of new models at Corps site

Future SDP Efforts?

- What are the priorities for SDP?
 - ► RARG
 - DMAM give us feedback!
 - Contact focus area or program manager
 - Joe.Z.Gailani@usace.army.mil
- Support navigation (and the environment)
- Sediment is a resource Where feasible, let's use it wisely

Bed and Fluid Mud Transport Model

Problem

- Dredged material placement issues are becoming more complex
 - Nearshore placement
 - Beneficial use
- Present methods cannot represent critical processes
- Predictive capabilities are required
- Objective
 - To develop multi-grain sediment transport algorithms that replicate critical processes for dredged material fate, including fluid mud and bed load

Approach

18

- Review existing models, new methods, and data (SDP)
- Develop new set of comprehensive algorithms
- Incorporate into LTFATE
- Validate through appropriate application