DOER Sediment and Dredging Processes (SDP) Focus Area

Dr. Joseph Z. Gailani
Research Hydraulic Engineer
Engineering Research and Development Center
U.S. Army Corps of Engineers

Jacksonville, FL
24-26 May 2011
SDP Focus Area Objectives

- **Situation**: The USACE dredging community is changing the way it does business. New challenges are posed by fiscal/manpower limitations, dredging cost increases, the goal of sustainable dredging and beneficial use, and evolving environmental standards. These issues must be addressed in a timely, cost-effective manner.

- **Barriers**: Limited understanding of and experience with potentially advantageous technologies and sediment handling methods limit USACE options to address these challenges and meet project budget/schedule.

- **Solution**: These limitations, which hinder application, can be addressed by targeted research studies
 - Identify or develop innovative operations and sediment handling technologies that may be beneficial to USACE
 - Test these new technologies in locations and situations suitable to evaluate performance in terms of defined metrics
 - Facilitate implementation of well-performing technologies into Operations and Planning
 - Demonstrate potential for benefits from dredged sediment
SDP and DMM Products
Everything is Connected!

- **Process Studies**
 - Wave/current erosion
 - Sediment-Fluid Interactions
 - Settling Velocity
 - Sedimentation

- **Near-field algorithms and models**
 - STFATE
 - Plume dynamics
 - Dredge Source Terms

- **Far Field Models**
 - PTM
 - LTFATE
 - Sediment Budgets
 - SMS Tools for exposure

Support Risk, Effects, Habitat, DMMP, Feasibility Studies

\[
E = \int C \, dt
\]
Wave-Induced Erosion Processes for Dredged Material Mounds

- **Problem**
 - Dredged material mounds eroded by wave action
 - Existing wave/current erosion equations for cohesive sediment are insufficient
 - Poor predictive capabilities

- **Objective**
 - Develop site-specific measurement methods for wave/current erosion
 - Develop parameterization methods for existing erosion algorithms
 - Investigate “enhanced” erosion potential due to waves

- **Approach**
 - Extensive laboratory testing of SEAWOLF flume
 - Compare wave/current erosion to steady state erosion for controlled sediment samples
 - Develop algorithms for wave/current erosion
Dredge Plume Settling Dynamics

- **Problem**
 - Dredge turbidity/TSS are a regulatory/environmental issue
 - Fate of suspended DM dependent on settling velocity
 - Aggregation/flocculation will influence settling

- **Objective**
 - Develop field deployable instrument to quantify settling of various sediment types found in dredge plumes
 - Methods to incorporate these data into predictive models

- **Approach**
 - Particle Imaging Camera System (PICS) for deployment in plumes
 - Data analysis tools to measure all sediment settling
 - Guidance/algorithms for DM settling
Sediment-Fluid Interactions

- **Problem**
 - Dredge turbidity/TSS are a regulatory/environmental issue
 - Fate of suspended DM dependent on interactions between sediments and fluid
 - Settling velocity/flocculation is time dependent

- **Objective**
 - Develop flocculation algorithms that are time-dependent for dredged material plumes
 - Evaluate/demonstrate algorithms in FATE models

- **Approach**
 - Field measurement using PICS
 - Quantify flocculation rates for hopper and mechanical dredge plumes
 - Develop algorithms as function of time and conc.
Dredging Residuals Density and Fluid Mud Profiling Survey System

Problem
- Current methods to characterize dredging residuals inefficient.
- No standardized USACE method to survey residuals/fluid mud.
- This measurement paucity has hindered effective management of environmental dredging and fluid mud dredging projects.

Objective
- Improve USACE capability to more accurately and precisely characterize fluid mud/dredging residuals.
- Produce an increased resolution density probe that doesn’t require calibration.

Approach
- Leverage funding with EPA to develop high resolution, non-nuclear density probe.
Fine-Scale Sedimentation from Dredge Sources

- **Problem/Purpose**
 - Environmental effects related to small-scale deposition of DM
 - This scale cannot be measured with existing survey equipment
 - Therefore, models are unverified small-scale sedimentation

- **Objective**
 - Evaluate and demonstrate commercially available systems for measuring sedimentation (Sedimeter) on fine (~1 mm) vertical scale

- **Approach**
 - Review literature available on Sedimeter and other devices
 - Laboratory evaluation
 - Field Demonstration
Open Water
Pipeline Placement Dynamics

- **Problem**
 - Pipeline placement results in increased turbidity, burial, blockage of light, sediment toxicity
 - Dynamics of fine-grained sediment placement are poorly understood

- **Objective**
 - Characterize transport and deposition patterns of fluid mud turbidity during continuous discharge through laboratory experiments
 - Develop predictive algorithms for FATE models

- **Approach**
 - Series of laboratory experiments for pipeline placement
 - Develop algorithms that are function of time and sediment composition
Sediment Management to Reduce Dredging

- **Problem**
 - Channels act as sediment traps
 - We are generally fighting against nature
 - Can we work with nature to reduce dredge volumes and address funding and capacity limitations?

- **Objective**
 - Investigate one or more emerging methods for managing sediment transport using natural forces (or harvesting sediment) to reduce dredge volumes

- **Approach**
 - Select one or more key projects for additional monitoring and “lessons learned” that can be applied to other Corps sites
 - Possible collaboration with LaCPR
Fine Grained Sediment Budgets for Regions with Navigation and Dredging

Problem
- Dredging produces an exposure pathway
- Risk from exposure to dredged material must be quantified
- Actual risk can only be addressed within context of all exposure pathways and associated risk

Objective
- Develop methods for building fine grained sediment budgets that include all sources to receptors
- Demonstrate sediment budget methods through site application

Approach
- Develop methods to Identify/quantify fine-grained sediment sources
 - Discharge (rivers, CSOs, etc)
 - Current/wave resuspension
 - Ships, dredging, other operations
- Develop budget framework to quantify overall exposure
- Develop methods for design alternatives
Open Lake and Bay Dredged Material Placement

- **Problem**
 - DM suitable for open water placement if often placed in CDFs or far offshore due to precedent
 - CDF capacity limited
 - Stakeholders (States) are concerned about providing permits for lakes/bays

- **Objective**
 - Develop and demonstrate methods to quantify impacts from all aspects of open lake/bay placement (sedimentation, turbidity, chemistry, habitat, toxicity)

- **Approach**
 - Work with State and other regulatory agencies to develop robust, defensible methods to address permitting issues
Problem
- Dredge turbidity/TSS are a regulatory/environmental issue
- Dredge TSS data are sparse
- Data collection complex due to temporal/spatial variability

Objective
- Improve sampling analysis protocol for field through understanding of relevant processes

Approach
- Assess dredged material release in laboratory setting
- Improve sampling analysis protocol for field
- Test, refine, and demonstrate new protocol
- Develop source term algorithms
Nearshore and Wetland Placement Tools

- **Problem**
 - WwN, BU, RSM, and sustainable solutions will require placement of DM in complex environments
 - Lack of understanding of how DM transports through these environments

- **Objective**
 - Develop guidance documents and tools for placement in nearshore and wetland locations
 - Methods to optimize natural distribution of DM in these environments

- **Approach**
 - Work with LaCPR and others to assess success and issues with ongoing projects
 - Use ongoing field studies in conjunction with DOER research to develop guidance and tools
SMS Framework for DMM Tools

- Problem
 - DMM tools have no common interface or interconnectivity
 - Presently, it is complex and time consuming to transfer data between tools
 - This results in less use of tools

- Objective
 - Incorporate dredging models and tools into SMS
 - Integrate dredge models with other USACE large domain models
 - Integrate dredge models with SMS data sources

- Approach
 - PTM and LTFATE in SMS
 - Near-field FATE models in SMS
 - GIS data for DM models
 - Workshops/Tech transfer
Models for Dense Fluid Dynamics

- **Problem**
 - Current models for placement dynamics are idealized and limited in breadth of application
 - Cannot address increasingly complex Corps applications with these models

- **Objective**
 - Develop new generation of placement models for discrete and continuous discharge (barge and pipeline placement)

- **Approach**
 - Investigate existing models
 - Literature review
 - Develop new 2-phase flow algorithms
 - Validation of new models at Corps site
Future SDP Efforts?

- What are the priorities for SDP?
 - RARG
 - DMAM – give us feedback!
 - Contact focus area or program manager
 - Joe.Z.Gailani@usace.army.mil

- Support navigation (and the environment)
- Sediment is a resource – Where feasible, let’s use it wisely
Bed and Fluid Mud Transport Model

- Problem
 - Dredged material placement issues are becoming more complex
 - Nearshore placement
 - Beneficial use
 - Present methods cannot represent critical processes
 - Predictive capabilities are required

- Objective
 - To develop multi-grain sediment transport algorithms that replicate critical processes for dredged material fate, including fluid mud and bed load

- Approach
 - Review existing models, new methods, and data (SDP)
 - Develop new set of comprehensive algorithms
 - Incorporate into LTFATE
 - Validate through appropriate application