DREDGING RESUSPENSION: DEFINING THE ISSUES

Thomas D. Borrowman thomas.d.borrowman@usace.army.mil

Topics

- Definitions
- Old issues
- Emerging issues
- Confounding factors
- Sources of uncertainty
- Conclusions

Why Does Resuspension Matter?

- Fundamental determinant of impacts related to exposure to elevated suspended sediment concentrations, turbidity, and contaminants
- Longstanding concerns for a host of potentially sensitive receptors, including SAV, coral reefs, migratory fishes, etc.
- Critical consideration for the conduct of environmental/remedial dredging projects
- Substantial economic consequences

The 4 R's

RESUSPENSION

RELEASE

RESIDUALS

RISK

RDC/EL TR-08-4

US Army Corps of Engineers® Engineer Research and Development Center

Dredging Operations and Environmental Research Program

The Four Rs of Environmental Dredging: Resuspension, Release, Residual, and Risk

Todd S. Bridges, Stephen Ells, Donald Hayes, David Mount, Steven C. Nadeau, Michael R. Palermo, Clay Patmont, and Paul Schroeder February 2008

nvironmental Laborator

Approved for public release; distribution is unlimited

DEFINITIONS

- Resuspension Dislodging of bedded sediment particles during the dredging process, and consequent transport and settlement of those particles at a new location
- Release Transport of dissolved constituents of disturbed pore water or constituents desorbed from sediment particles
- Residuals Disturbed sediments remaining after cessation of dredging
- Risk Consequences of resuspension, release, and creation of residuals

Old Issues

Unanswered questions 40 years after NEPA

- What are the principal drivers affecting the rate of resuspension?
- What are the rates of resuspension associated with basic modes of dredging?
- What are the relevant spatial and temporal scales of resuspension?

Old Issues

Unanswered questions 40 years after NEPA

- What thresholds of suspended and deposited sediment exposure trigger biologically meaningful detrimental responses?
- What management practices and control measures actually provide protection benefits?
 - The current practice of resorting to environmental windows underscores a need to explore new approaches and technologies

Emerging Issues

- Concerns being extended to other sources, including ship traffic
- Increasing pressure for continuous, real time monitoring without established means of interpreting data or providing risk-based responses/controls
- Restrictions and controls applied to remedial projects are increasingly being incorporated into navigation dredging WQ certificates without a prior risk assessment or documented need

Confounding Factors and Sources of Uncertainty

- Diverse receptors and pathways
- Lack of standardized methodologies
- Many physical factors influence resuspension
- Many operational factors influence resuspension
- Regulatory inconsistencies

Effects of TSS and Turbidity

Juvenile Salmonids

Many studies have not used protocols that establish doseresponse relationships.

Physical Factors That Influence Resuspension

- Mode of dredging
 - Mechanical vs. hydraulic
- Hydrodynamics
 - Prevailing current velocities and vectors
 - Bathymetry
- In situ sediment properties
 - Grain size distribution
 - Water content/bulk density/liquidity
 - Atterberg Limits (Liquid and Plastic)
- Depth and salinity

Operational Factors That Influence Resuspension (e.g., bucket dredge)

- Bucket type
- Size, volume, exposed surface area
- Ascent speed
- Descent speed
- Reset frequency
- Cycle time
- Production rate
- Sediment cohesion/adhesion
- Leakage from seals
- > Debris
- Bottom sweeping/bed leveling
- Anchoring and spud movements
- Barge overflow
- Tug and tender maneuvering
- Operator skill

Perceptions vs. Reality

Perception

Resuspension controls provide environmental protection

Reality

- Controls frequently slow down production rates, but do not decrease mass loss
- > Tradeoffs are often ignored
 - e.g., many critters tolerate short, intense exposures better than chronic exposures
 - e.g., air quality effects due to prolonged emissions

Evaluation of Resuspension

- Fate and transport models have become more sophisticated with improved understanding and handling of fundamental processes
- Uncertainty still surrounds source terms
- Empirically-derived source models exist only for a limited set of dredge types and equipment, site conditions, and sediment and operational characteristics
- Reliable, comprehensive dredging source models are needed for accurate assessment of risk associated with resuspension
- Monitoring is required to verify source term

Plume Spatial/Temporal Scales

Bucket Dredge Plume Components

Characterization of Temporal Scales of Resuspension

- Difficult but necessary step in determination of exposures
- Exposures for different receptors may vary by orders of magnitude based on location in relation to the source over time
 - Even mechanical dredges are not stationary, but advance at a certain rate
 - Receptors may be mobile or sessile, thus exposures may change substantially based on the dredging scenario

Spawning Habitat

Technical Challenges

- Resuspension is difficult to characterize quantitatively because acute effects are seldom observed
 - > Harm, if any, occurs at sublethal levels
- Predictive near- and far-field models have many advantages in support of risk-informed decisions
 - > Require validation, calibration, and verification
 - > Very few empirical data sets exist
 - Data expensive to obtain

DREDGE Model

DREDGE Post Processor Dissolved Contaminant Results: Copper

In Meters	30	60	90	120	150	180	210	240	270	300	330	360	390	420	450	480	510
-36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.000201
-30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.000201	0.000402	0.000803
-28	0	0	0	0	0	0	0	0	0	0	0	0	0.000201	0.000402	0.001004	0.001808	0.003013
-26	0	0	0	0	0	0	0	0	0	0	0.000201	0.000402	0.001004	0.002209	0.004017	0.006829	0.010846
-24	0	0	0	0	0	0	0	0	0.000201	0.000402	0.001004	0.00241	0.005021	0.009038	0.015063	0.023298	0.034545
-22	0	0	0	0	0	0	0	0.000201	0.001004	0.002611	0.005825	0.011448	0.020285	0.033139	0.050611	0.073102	0.101013
-20	0	0	0	0	0	0	0.000603	0.002008	0.005825	0.013457	0.02631	0.045791	0.073303	0.109045	0.153818	0.207418	0.269238
-18	0	0	0	0	0.000201	0.001004	0.00462	0.013457	0.03113	0.060451	0.103423	0.161046	0.233513	0.320414	0.420333	0.531856	0.653368
-16	0	0	0	0.000201	0.002008	0.010243	0.031532	0.073102	0.139564	0.232911	0.35212	0.495358	0.658988	0.839174	1.032285	1.234696	1.443389
-14	0	0			0.022093		0.2.2002		0.0200.2				1.644212			2.593363	
-12	0	0	0.005021				0.754218			2.142756			3.626074			4.925982	
-10	0	0.004017				1.76524	2.618135		4.32459	5.10899	0.0000	6.479025				8.458667	8.82219
-8		0.14619				5.773734	7.217878	8.45544	9.49536	10.36022		11.66436	12.14833	12.5447	12.86831		13.34315
-6			6.263437	9.789349		14.40153				17.86779	18.1702	18.35763	18.45988	18.49803		18.44149	
-4	4.914796														23.90051		
-2			48.97899			40.02067				32.99579			29.60721		27.85239		
0			62.56336												29.30394		
2			48.97899							32.99579					27.85239		
4	4.914796		22.97774						26.70395						23.90051		
6	0.093584		6.263437			14.40153		16.73886					18.45988	18.49803	18.48796		
8	0.000402		0.990073		4.151371		7.217878	8.45544	9.49536				12.14833	12.5447	12.86831		13.34315
10	0	0.004017				1.76524	2.618135		4.32459	5.10899	0.0000				8.047799		8.82219
12	0	0		0.046795					1.645454							4.925982	
14	0	0			0.022093				0.523641			1.334387		1.960952		2.593363	
16 18	0	0	0 0	0.000201	0.002008			0.073102	0.139564	0.232911					0.420333	1.234696	
20	0	0		0	0.000201	0.001004	0.00462		0.005825			0.161046	0.20020		0.420333		
20	0	0	•	0	0	0	0.000003	0.002008				0.043791			0.153616		
24	0	0	_	0	0	0	0	0.000201		0.002011					0.030011		0.101010
26	0	0		0	0	0	0	0	0.000201	0.000402			0.003021		0.004017		
28	0	0		0	0	0	0	0	0	0	0.000201	0.000402			0.004017		0.0200.0
30	0	0		0	0	0	0	0	0	0	0	0	0.000201	0.000402		0.001808	
32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.000201	0.000402	0.000201
34	0	0	· ·	0	0	0	0	0	0	0	0	0	0	0	0	0	0.000201
36	0	0		0	0	0	0	0	0	0		0	0	0	0	0	0
30	- 0	- 0	- 0		- 0	- 0	- 0	- 0	- 0	- 0	- 0	- 0	- 0		- 0	- 0	- 0

- 1% Loss
- Results from centerline concentration used for screening
- Copper Criteria 18 ug/L

Deposition of Resuspended Material

Particle Tracking Model (PTM)

- 3D dynamic transport
- Follows size classes of sediment through complex grids
- Accepts external source term
- Ability to compute sediment deposition and re-entrainment
- Adding modules to track water quality and contaminants
- Adding module to calculate exposures of organisms to suspended or deposited sediment

Ships as a Source of Resuspension

Conclusions

- Resuspension issues form a basis for a majority of problematic environmental concerns associated with dredging and dredged material disposal
- These issues have proven to be exceedingly difficult to resolve
- Many sources of uncertainty exist regarding critical aspects of the process
- Risk-informed approaches represent a promising direction for instigating progress in an otherwise stagnant arena

References

Bridges, T., Ells, S., Hayes, D., Mount, D., Nadeau, S., Palermo, M., Patmont, C., and Schroeder, P. 2008. The four Rs of environmental dredging: Resuspension, Release, Residues, and Risk. U.S. Army Engineer Research and Development Center, Environmental Lab ERDC/EL TR-08-4, 56pp.

http://el.erdc.usace.army.mil/elpubs/pdf/trel08-4.pdf

- Borrowman, T.D., and Schroeder, P.R. (in preparation). "A Post Processing Toolbox for the USACE DREDGE Model", US Army Engnieer Research and Development Center.
- Clarke, D. 2004. Environmental windows and the precautionary principle: Does practice make perfect? Proceedings of the 17th World Dredging Congress (WODCON XVII), Hamburg, Germany
- Hayes, D.F. and Je, C.H. (2000). "DRAFT DREDGE Model User's Guide." US Army Engnieer Research and Development Center, http://el.erdc.usace.army.mil/elmodels/pdf/dredge.pdf

