Addressing Resuspension Risks as a Decision Problem

Todd Bridges, Igor Linkov and Burton Suedel
US Army Engineer Research and Development

US Army Engineer Research and Development 601-634-3626, Todd.S.Bridges@usace.army.mil

The Beginning...

How could we balance engineering/societal needs with environmental protection goals?

Presentation -- Overview

- Case Study Introduction
- Approaches to Selecting Dredging Alternatives
 - Gut Feeling
 - Some numbers
 - Multi-criteria Decision Analysis
- MCDA Framework and Case Study Illustration
 - Problem Formulation
 - Risk Assessment
 - Decision Analysis
- Conclusion
- References

Hypothetical Case Study - Introduction

- Issue: Toddistan is planning to deepen entrance channel to coastal port
- Regulatory Environment: Port borrowing money from World Bank, so required to:
 - Provide environmental protection
 - Decide whether or not to dredge

- Competing Stakeholder Concerns:
 - Maintaining navigation
 - Protection of resources from sediment resuspension
 - Minimizing duration of project and costs

Hypothetical Case Study - Introduction

Geo-physical Data:

- Diurnal flow
- Predominately tidal-dominated currents
- Deepening means clean materials, not contaminated
- Sediments 30 percent fines, 70 percent sand
- Going to -55 ft depth from –45 ft

Hypothetical Example – Map

Hypothetical Case Study - Introduction

General Information

- Dredging reach is 900 m long, 150 m wide
- Channel is 15,000 m long
- Distance from dredging area to:
- SAV = 1,200 m
- Fish = 4,000 m
- Coral = 4,200 m

Alternatives: Hopper Dredge 0, 15 and 30 min Overflow

Alternative 4: Environmental Window

Approaches to Selecting Dredging Alternative

- Subjective (Gut Feeling)
 - Pros: easy to do
 - Cons: no rigor, potential mistakes, not transparent and not reliable
- Single Criterion (e.g., \$\$\$) or Two Criteria (cost-benefit)
 - Pros: relative ease of implementing
 - Cons: requires monetizing or scaling to one unit, difficult to modify/adjust for specific criteria and values
- Multi-Criteria Decision Analysis
 - Pros: transparent, state-of-the-art tool, can be tailored/modified in real time, records and visualizes differences among alternative options and stakeholder groups
 - Cons: relatively intense, may require specialized expertise and knowledge

Ad-Hoc Decision-Making Processes

Challenge: Multiple & Uncertain Criteria

Risk Criteria

Alternative	Cost	Survivability of Juvenile Salmonids	Survivability of SAV		
		%			
Hopper - No Overflow	100 95		95		
Hopper – 15 Min Overflow	40	80	70		
Hopper – 30 Min Overflow	30	70	30		
Env. Window	45	100	80		

Real World

How to combine these criteria?

Evolving Decision-Making Processes

Tool Integration

MCDA Framework

Framing Decision

- Problem statement
 - Select dredging alternative that maximizes benefits and minimizes risks
- Dredging Alternatives
 - Mechanical
 - Hopper
 - Others
- Constraints
 - Financial
 - Resources
 - Ecological (Protection of migrating salmonids and coral reefs)
- Stakeholders
 - Federal Agencies
 - State Agencies
 - Industry
 - General public

Requirements for Decision Criteria/Performance Measures

- A coherent criteria set is: (Roy, 1985)
 - Exhaustive (nothing important left out)
 - Consistent (no secret preferences)
 - Non-redundant (no double counting)
- Effective criteria are: (Yoe, 2002)
 - Directional (maximum, minimum or optimum)
 - Concise (smallest number of measures)
 - Complete (no significant impact left out)
 - Clear (understandable to others)
- Criteria are often correlated but can still be acceptable
- Criteria should be tested throughout the decision process

Dredging Impact

RISK FRAMEWORK

Multi-Criteria Decision Analysis and Tools

- Multi-Criteria Decision Analysis (MCDA) methods
 - Evolved as a response to the observed inability of people to effectively analyze multiple streams of dissimilar information
 - Many different MCDA approaches
- Based on different theoretical foundations (or combinations)
 - Optimization models
 - Goal aspiration
 - Outranking models

Multi-Criteria Decision Analysis and Tools

- See Yoe 2002 (Web address in Reference Section)
- Simplified methods
 - "Pros and cons"
 - Maximin and Maximax
 - Decision tree
 - Influence diagrams
- Multi-attribute utility/value theory (MAUT)
- Analytical Hierarchy Process (AHP)
- Outranking

A Familiar Decision: Buying a Car

Metric (Weight)	Units	Cars				
		Option 1	Option 2	Option 3	Option 4	Option 5
Cost (25)	Dollars	27,000	45,000	30,000	35,000	12,000
Resale Value After Three Years (5)	% of Original Value	44	56	57	49	33
Repair/Maintenance Cost Per Year (5)	Dollars	100	500	1,000	250	500
Fuel Efficiency (15)	MPG	30	25	45	27	32
Passenger Compartment Space (15)	ft ³	150	170	165	160	145
Style and Comfort (5)	Qualitative	Finest	Finest	Average	Average	Poor
Safety Rating (30)	NHTSA Safety Rating	2	3	3	5	2

Ranking and Contributions by Metric

Ranking Sensitivity to Weight Allocation

Cost: 25 to 30 Safety: 30 to 25

Summary:

Why do We Need to Frame Resuspension as

Decision Problem?

- Nature of the problem at hand
 - Goal: Select dredging alternative
 - Issues:
 - Limitation of dredging methods
 - ◆ Ecosystem Health
 - Regulatory Constraints
 - Stakeholder
 - Tradeoff are inevitable
 - Minimum Risk is not the goal, risk is just one of the assessment criteria

Main Points

- Working through the resuspension problem using multicriteria decision analysis:
 - Quantify risks and benefits associated with alternative resuspension management strategies
 - Integrate stakeholder values wrt objectives
 - Visualize technical data uncertainty and the implications of different values
- Risk assessment provides key inputs for quantifying defined decision criteria

