Risk Management

Engineering and Operational Controls

Paul R. Schroeder Paul.R.Schroeder@usace.army.mil Tim Welp Timothy.L.Welp@usace.army.mil

RISK FRAMEWORK

Presentation Objective

Risk Management –

Reduce sediment resuspension risks (where unacceptable) to acceptable levels by use of engineering controls, and/or use of operational controls.

Concept

- Risk is managed by managing the exposure.
- Exposure can be managed by controls that:
 - reduce the source concentration,
 - alter the source location,
 - reduce total mass of sediment resuspended in the water column,
 - alter transport of resuspended sediment,
 - increase settling.

Engineering Control

Definition: Requires a physical construction technology or modification of the physical dredge plant to cause the desired change in conditions.

Source: Geotechnical Supply Inc

Operational Control

Definition: Action that can be undertaken by dredge operator to reduce unacceptable risks of the dredging operations.

If it is determined that unacceptable risk(s) exist

Engineering and/or operational controls must be evaluated for effectiveness for the site and sediment conditions.

Control Applications

Changes in dredging equipment and/or operations can modify:

- the resuspended sediment concentration at source,
- total mass of sediment resuspended in the water column,
- the release points, and
- transport of resuspended material.

Control Applications

But changes in dredging equipment and/or operations involves tradeoffs:

- dredge production rates,
- project duration,
- costs,
- etc.

Tradeoffs

- Are involved with the use of engineering and operational controls as risk reduction solutions.
 - Big hopper dredges can cost approximately \$85K/day.
 - Big cutterheads can cost approximately \$45K-\$55K/day.

Factors Influencing Sediment Resuspension

Mechanical versus hydraulic issues.

- Magnitude of resuspension,
- Location of resuspension in water column,
- Strength of resuspension,
- Continuous or intermittent.

Relative performance is a function of site-specific conditions.

Engineering Controls Type of Dredge

Empirical Solids Releases

Resuspension of fine-grained mass of dredged sediment to water column

- Mechanical dredges
 - Open or watertight \rightarrow 0.2 to 9%, typically 0.5 to 2%
 - Environmental \rightarrow 0.1 to 5%, typically 0.3 to 1%
- > Hydraulic dredges \rightarrow 0.01 to 4%, typically 0.2 to 0.8%

Engineering Controls Size Matters

• As size increases:

- Production rate increases,
- Resuspension rate and therefore strength (concentration) of resuspended sediment increases,

But, exposure time is decreased because the dredge is operated for a shorter amount of time and total mass of sediment resuspended is decreased.

Engineering Controls Silt Curtains

Silt curtains are devices designed to control suspended solids and turbidity in the water column generated by dredging and disposal of dredged material.

Components of a Silt Curtain

Effectiveness of Silt Curtains

Depends on:

- Nature of operation

Quantity and type of

material in suspension

Source: Layfield

- Characteristics, construction, and conditions
- Method of deployment
- Hydrodynamics

Silt Curtains "Lessons Learned"

- Used at various sites with various degrees of success.
- Should not be considered a "one-solutionfits-all" type of BMP.
- Are highly specialized, temporary-use devices that should be selected only after careful evaluation.
- Requires knowledge and practical experience for successful applications.

Silt Curtain "Lessons Learned"

- Deploying in currents > 1 to 1 ½ knots problematic.
- Low current/high current conundrum.
- In general, should be used in slow to moderate currents, stable water levels, and relatively shallow water depths.
- Selection/use is extremely site-specific (not a silver bullet).

http://el.erdc.usace.army.mil/dots/doer/pdf/doere21.pdf

Operational Controls

Operational Controls Slow Down

- Slowing operation can decrease strength but may increase total mass of resuspension.
- Slowing operation would change exposures turbidity,
 - net deposition,
 - deposition rate
 - and potential dose.

Operational Controls Mechanical Dredges

- Varying the bucket descent speed
- Varying the bucket ascent speed
- Varying the slewing speed
- Barge overflow/no overflow

Operational Controls Mechanical Dredges

Varying Bucket Speeds

Mechanical Dredge	Bucket Cycle	Bucket Ascent &	Instantaneous	Mass Resuspension	Percent	Project
Bucket Size	Time	(Descent) Velocity	Production Rate	Rate	Resuspension	Duration
yd3 (m3)	sec	m/s (m/s)	m ³ /hr	g/s		Days*
4.0 (3.0)	50	1.06 (0.8)	184	217	0.72	27
4.0 (3.0)	75	0.5 (0.37)	122	142	0.71	39
4.0 (3.0)	100	0.32 (0.24)	92	123	0.81	50
30.0 (23.0)	50	1.06 (0.8)	1408	1432	0.61	4
30.0 (23.0)	75	0.5 (0.37)	938	977	0.63	5
30.0 (23.0)	100	0.32 (0.24)	704	843	0.73	6

*Based on 100,000 m³ project

Operational Controls Cutterhead Dredges

- Using different cutterhead rotation speeds
- Using different swing speeds
- Varying the suction velocity
- Varying the cut height and step length
- Varying the direction of cut

Operational Controls Hopper Dredges

- Changing the suction pipe velocity
- Varying the trailing speed
- Loading with one suction pipe instead of two
- Allowing overflow, not allowing overflow
- Vary draghead operation

Hypothetical Example: Operational Controls

With Overflow

Without Overflow

Time Series of 0, 15, and 30 Minute Overflow Deposition

Hypothetical Example Dredging Scenarios

Dredging Scenario	Production Per Day	Dredging Duration (Days)	Approximate Project Dredging Cost*
Without Overflow	32,000 m ³	219	\$13,140,000
With 15 Minutes Overflow	48,000 m ³	146	\$8,760,000
With 30 Minutes Overflow	57,600 m ³	122	\$7,320,000

*Assume \$2,500/hr dredge rental cost

Questions?

