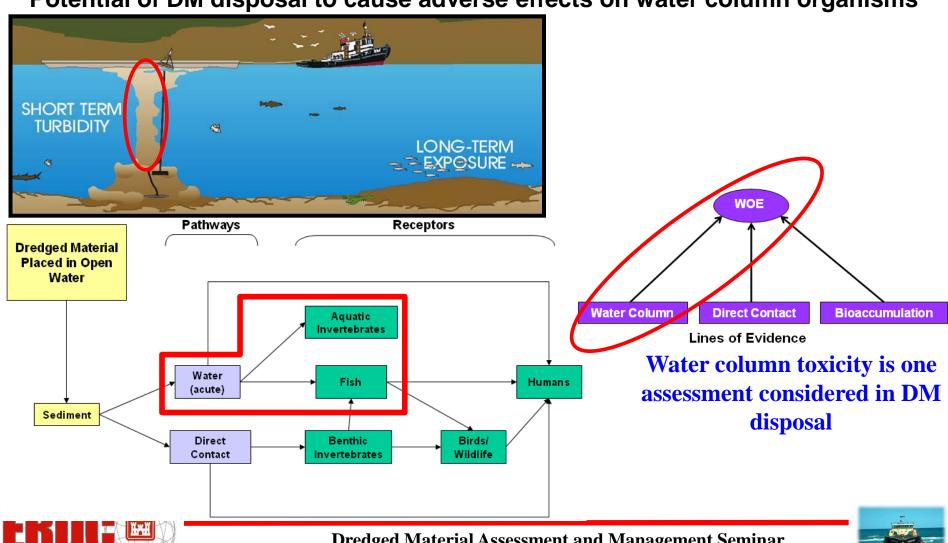
Water Column Evaluation

Alan J Kennedy Research Biologist US Army ERDC, Vicksburg, MS


Email: Alan.J.Kennedy@usace.army.mil

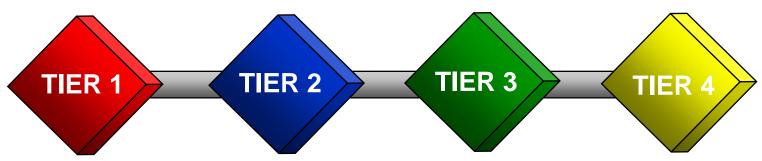
Water Column Evaluation (Conceptual Model)

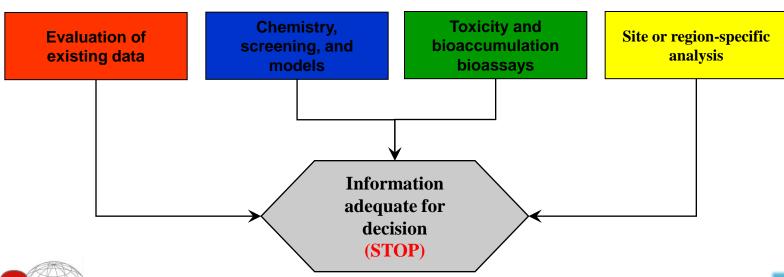
Potential of DM disposal to cause adverse effects on water column organisms

gineer Research and Development Cente

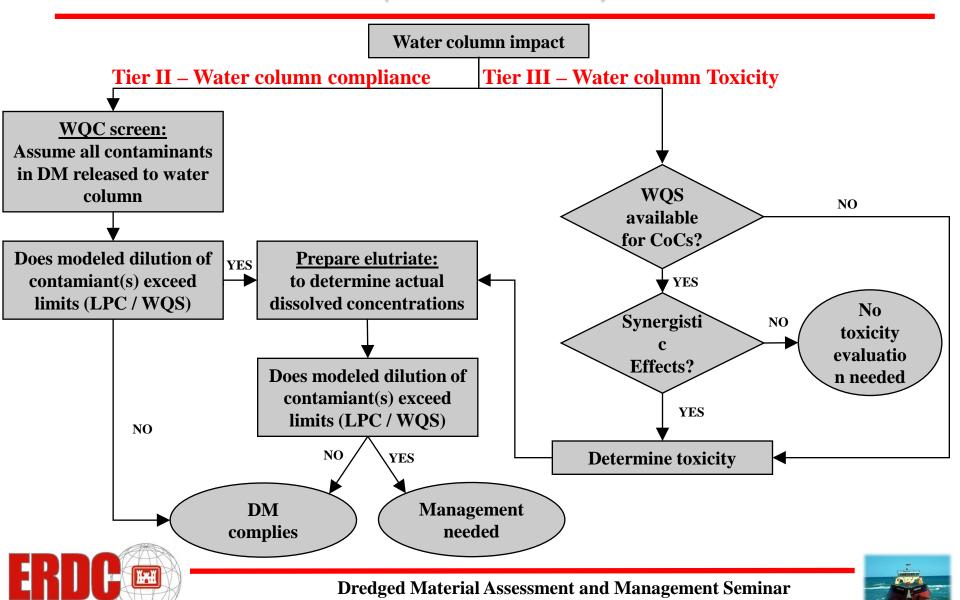
Water Column Evaluation Approach: Open water disposal of Dredged Material

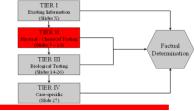
Main discussion points


- DM is suspended in water for a short period
- Short-term water column exposure and effects
- Can a factual determination be made from existing information (chemical, toxicity values)?
 - Relate to applicable water quality standards
 - If more information needed, conduct bioassays



Water Column Evaluation


Tiered process → follow as far as necessary to make decision



Water Column Evaluation (Decision Tree)

24-26 May 2011, Jacksonville, FL

Water Column Evaluation (Physical / Chemical Testing)

Contaminant concentration in disposed DM:

- Ocean disposal (Ocean Testing Manual)
 - Seaward of national baseline
 - Marine Protection, Research and Sanctuaries Act (MPRSA)
 - Limiting Permissible Concentration (LPC)
 - <u>Definition</u>: Water concentration not to be exceeded by DM constituents after mixing
 - Based on Water Quality standards, or
 - An acute LC50 adjusted by an application factor (usually 0.01)
- Inland disposal (Inland Testing manual)
 - Landward of national baseline, rivers, lakes
 - Clean Water Act
 - Mixing zones variable contingent on state, water body
 - Compliance with WQS (at least as strict as national standards)

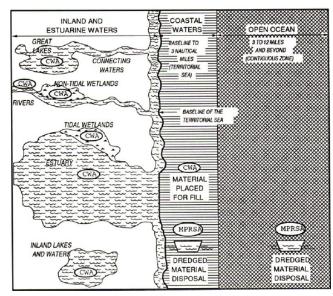
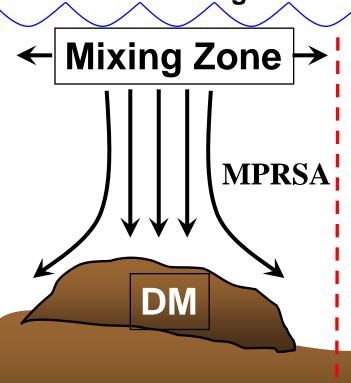


Figure 1-1. Geographical Jurisdictions of the MPRSA and CWA From USEPA / USACE. 2004. EPA842-B-92-008.



Water Column Evaluation (Physical / Chemical Testing)

Must meet LPC/WQS at all times

Outside Zone

"The discharge of dredged material cannot cause the WQS to be exceeded outside the mixing zone unless the State provides a variance to the standard."
---Inland Testing Manual (1998)

Sediment

TIER II: Two step process

1. Screening Step:

- Conduct chemical analysis of DM for CoCs
- Make very conservative assumption
 - 100% DM contaminants goes to water
- For contaminant requiring greatest dilution (D):
 - DM < LPC or WQS → DM complies → STOP
 - DM > LPC or WQS → Move to step 2

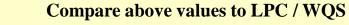
2. Elutriate preparation step:

- More realistic chemical analysis
- Use more representative dissolved concentrations in mixing model
- No biological testing

$$D = C_s * \frac{SS}{1000} - \frac{C_{wq}}{C_{wq} - C_{ds}}$$

D = Dilution to meet WQS and / or WQC

 C_s = contaminant concentration in the sediment

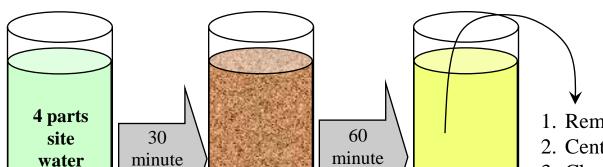

SS = suspended solids concentration

 $C_{wq} = WQS$ and / or WQC

 C_{ds} = Disposal site concentration

$$D = \frac{C_e - C_{wq}}{C_{wq} - C_{ds}}$$

 $C_{\rm e}$ =concentration of the dissolved contaminant in the standard elutriate



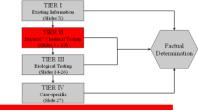
Apply data into predictive numerical mixing model (Appendix C)

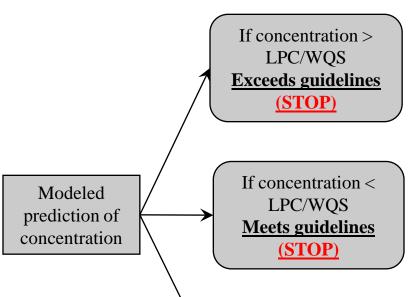
TIER II: Step Two: Prepare Elutriate

settling

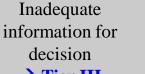
- 1. Remove overlying water
- 2. Centrifugation / filtration
- 3. Chemical analysis

Media Type	Application
Dredged Material (1 part)	Elutriate preparation
Dredging Site Water (4 parts)	Elutriate preparation



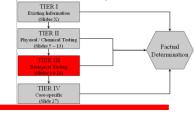


1 part sediment mixing


TIER II: Possible conclusions

DM exceeds LPC / WQS

- Needs management action
- No further testing needed
- 2. DM meets LPC / WQS:
 - 4-hours within mixing zone (MPRSA)
 - At all times outside mixing zone
- DM meets LPC / WQS but...
 - **WQC** not available some contaminant(s)
 - **Concern for contaminant** interactions
 - Move to Tier III analysis



decision → Tier III

TIER III: Overview

- Biological testing conducted if Tiers I / II:
 - Inadequate information for factual determination
 - CoCs that lack WQS
 - Contaminants present at potentially adverse levels (gray area)
 - Potential for unknown chemicals or interactions
- Tier III
 - Biological exposures conducted
 - Evaluate potential for toxicity
 - Generate lethal/effective median concentration (L(E)C50)
 - Relate toxicity information to mixing model / standards

TIER III: Biological Testing Summary

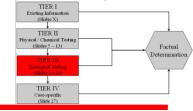
Prepare elutriate (as before)

- Remove overlying water
- Contains both dissolved and suspended DM
 - Centrifuge / filter
 - Only if necessary
- Assess survival across elutriate dilution
- Apply resulting toxicity data to mixing model

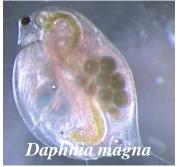
Media Type	Application
Dredged Material (1 part)	Elutriate preparation
Dredging Site Water (4 parts)	Elutriate preparation
Disposal Site Water (prefered)	Dilution of elutriate Reference water
Reconstituted Water (other approved water)	

TIER III: Test Species Selection

- Three species of different phyla <u>recommended</u> to evaluate the potential for elutriate toxicity
 - Zooplankton, crustaceans, fish, molluscs, (phytoplankton)
 - ► MPRSA → must test three species
 - ➤ CWA → should test multiple species
 - At least one <u>needs to be</u> a recommended species (previously "benchmark")
 - Routinely utilized
 - Proven track record
 - National guidance or RIM


TIER III: Test Species Selection

- Other test species
 - > Represent organisms indigenous to the disposal site
 - Locally important
 - > Regional Implementation Manuals
- Species selection considerations
 - Ecological relevance / indigenous
 - Appropriate chemical sensitivity / age class (e.g., larvae, juveniles)
 - Availability of standardized protocol / consistent track record
 - Susceptibility to confounding factors (DO₂, laboratory handling)
 - Availability year round



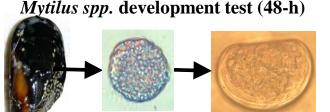
Tier III: Test Species Freshwater disposal

- Freshwater (< 1 ‰)
 - Arthropoda / Crustacea
 - Cladocerans (i.e., zooplankton)
 - Daphnia magna / pulex *
 - Ceriodaphnia dubia *
 - Vertebrata
 - Fish
 - Pimephales promelas *
 - Lepomis macrochirus
 - Oncorhynchus mykiss *

OK Dept Wildlife Conservation

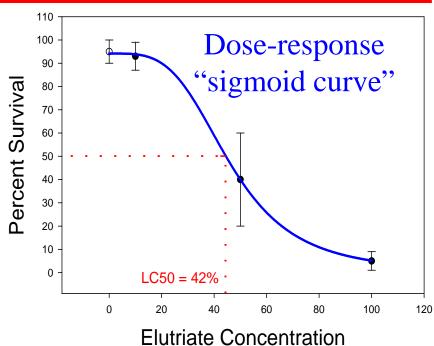
* Recommended species

Tier III: Test Species Marine/estuarine disposal


- Marine (> 25 %)
 - > Echinodermata
 - Urchins, Strongylocentrotus, Arbacia
 - Sand Dollar, Dendraster spp.
 - > Arthropoda / crustacea
 - Shrimp
 - Americamysis bahia *
 - Neomysis *
 - Holmesimysis spp. *
 - Copepods, Acartia sp. *
- Estuarine / Marine (1 25+ ‰)
 - Bivalve Molluscs
 - Oysters, Crassostrea spp. *
 - Mussels, Mytilus spp. *
 - Vertebrata
 - Silversides, Menidia *Cyprinodon variegatus *

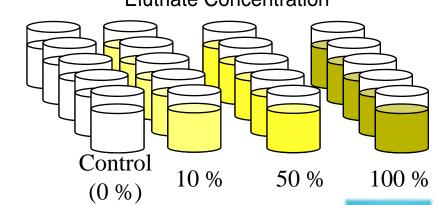


* Recommended species



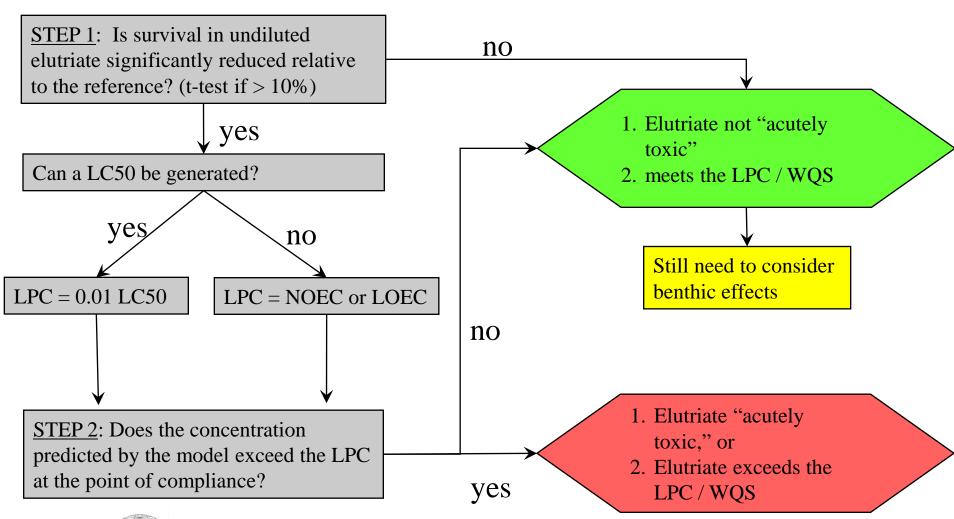
TIER III: Conduct of Bioassays

Slide


Test methods	ITM Appendix E
Exposure	48 or 96-hours
Primary endpoint	Survival or development
Dilutions	Three (10, 50, 100%)
Replicates / dilution	Five
Organisms / replicate	Usually 10
Acceptability criterion	• ≥70 or 90 % survival
	 Reference toxicity test within range

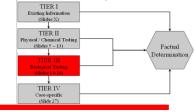
Specific testing protocols

- •ITM Appendix E
- •US EPA / ASTM citations within



Dredged Material Assessment and Management Seminar 24-26 May 2011, Jacksonville, FL

TIER III: Data analysis

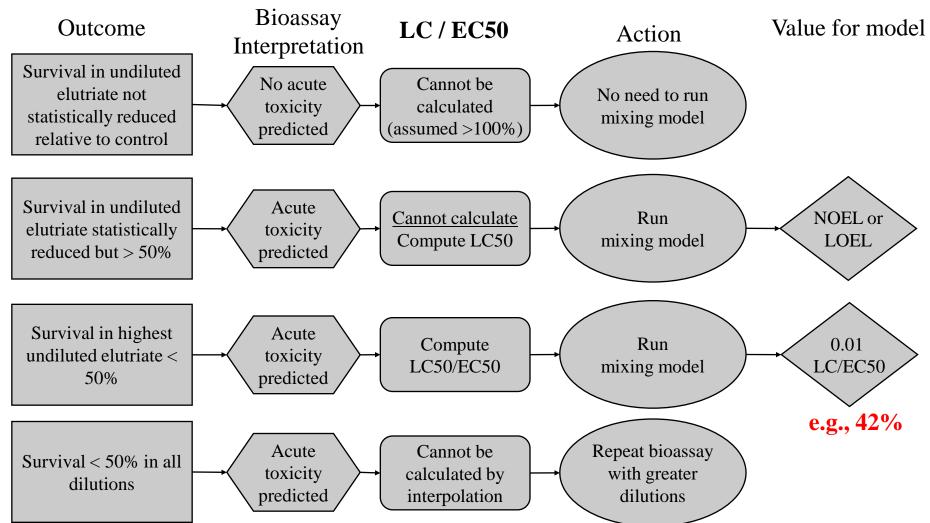


TIER III: Data Analysis (Step 1)

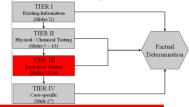
- Survival in undiluted elutriate reduced more than 10% relative to the control?
- Statistical reduction of survival in the undiluted elutriate relative to the control (dilution water)?

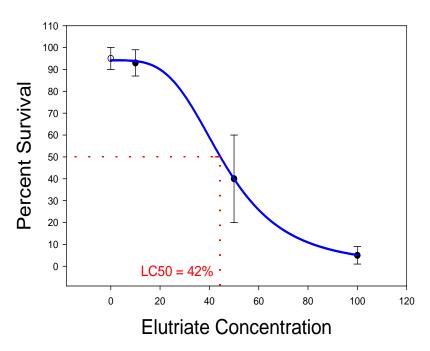
= 20 ± 8% Survival

= 90 \pm 5% Survival


Next step: determine LC50 value, LPC and modeled dilution

TIER III: Data Interpretation

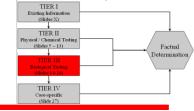




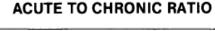
TIER III: Data Analysis (Step 2)

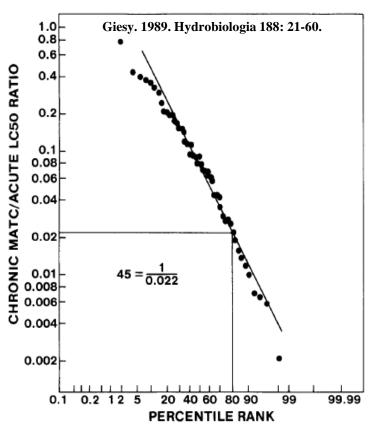
Determine the LC50 value

 $LC50 (42\%) \times 0.01 (LPC) = 0.42\%$


Model output indicates DM is < 0.1% inside and outside the mixing zone

- •DM diluted to lower concentration (0.1%) than LPC (0.42%)
- •DM elutriate does not exceed LPC / WQS ("passes")





Application Factors Considerations

- NAS (1972): Default = 0.01
- **EPA:** 40cfr 227.29 (3)
 - Use different AF with scientific rationale
 - ACR = LC50 / NOEC, AF = 1 / ACR
 - \rightarrow AF = 0.1 to 0.01
- (Verma 1981)
- > 90th ACR: 73 (AF = 0.01) (Lange 1998)
- Fish AF = 0.15 (Arsenic) (Lima 1984)
- \rightarrow AF = 0.1 \rightarrow 60% of fish
- (Heger 1995)
- $AF = 0.01 \rightarrow 90\%$ of fish
- AF is chemical class specific
 - Persistent: AF = 0.01
 - Non persistent (half life <8 wks):</p>
 - AF = 0.05 to 0.1
 - Ammonia: AF = 0.11 (Thurston 1986)

TIER III: Possible conclusions

- 1. DM discharge toxicity <u>not predicted</u> relative to the reference condition
- 2. DM discharge toxicity <u>is predicted</u> relative to the reference condition
- 3. Further information needed for actual determinations
 - Move to Tier IV (less common)

TIER IV: Case-specific (laboratory / field testing)

- Lower tiers <u>do not</u> provide enough information for factual determinations
 - Rare occasions
 - Inconclusive test results
 - Conflicting evidence
 - Ammonia toxicity suspected
- Specific studies may include:
 - Use of different test species / exposure durations / endpoints (e.g., growth, reproduction)
 - Laboratory or in situ exposures (field)
 - TRE/TIE to discriminate ammonia, metals and organic toxicity

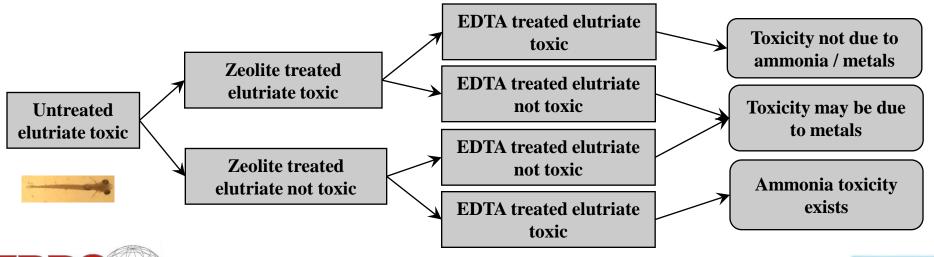
Confounder: Ammonia Methods for removal in bioassays

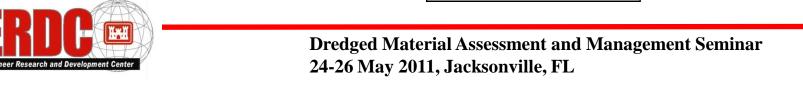
TIER I

Existing Information
(Sides X)

TIER II

Physical / Chemical Testing
(Sides S - 1))

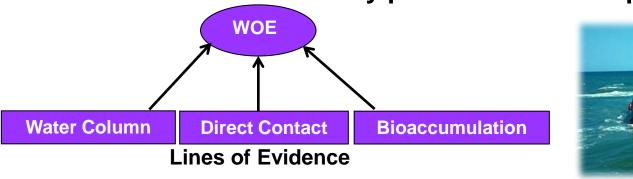

TIER III


Biological Testing
(Sides 1-420)

TIER IV

Casa-opecific
(Sides X)

- Algae: Olva (Marine)
- pH modifications
 - ► Increase pH (10) and aerate → decrease pH → test
 - PROBLEM: alteration of metals speciation
- Zeolite Column Treatment (freshwater)
 - Zeolite removes ammonia and metals toxicity
 - EDTA treatment to remove metals
 - PROBLEM: Cannot completely rule out metals toxicity



Synthesis: Water Column

- Goal: Evaluate potential of DM to cause adverse effects on water column organisms
- This is just one pathway to establish a weight of evidence
- Still need to consider other pathways (e.g., benthic effects)
- Generate data to estimate toxicity potential of DM disposal

 Procedure: Follow tiered process only as far as necessary to make risk-based determination

References cited

- •Fava JA, McCulloch WL et al. 1984. Marine Technology Society, Washington DC, 10-12 Sept 1984
- •Giesy JP, Graney RL. 1989. Hydrobiologia 188/189: 21-60.
- •Heger W, Jung SJ, Martin S, Peter H. 1995. *Hydrobiologia* 31: 2707 2726.
- •Lange R, Hutchinson TH, Scholz N, SolbeJ. 1998. Chemosphere 36: 115-127.
- •Lima AR, Curtis C, Hammermeister DE et al. 1984. Arch Environ Contam Toxicol 13:59 –601.
- •Thurston RV, Russo RC, Meyn EL, Zajdel RK, Smith CE. 1986. Trans Am Fish Soc 115:196-207.
- •Verma SR, Tonk IP, Dalela RC. 1981. Acta Hydrochim Hydrobiol 9(3): 247-254.

