

People | Clients | Growth | Quality | Performance

Reservoir management to minimize mercury in fish: lessons from a hydropower storage basin

Charleston, South Carolina September 7, 2011

Jody Kubitz, Ph.D.

Deer Lake is a Great Lakes Area of Concern (AOC)

Deer Lake AOC is connected to Coastal Lake Superior

Image of Deer Lake reservoir

Mercury Cycling Model (Watras & Huckabee 1994)

New flooding increases mercury methylation

3 critical requirements for mercury methylation

Anaerobic (sulfate-reducing) bacteria

Objective was to minimize net mercury methylation

- Sediment Maintain a "full" reservoir condition to minimize sediment-based nutrients (sulfate) for mercury-methylating bacteria
- Water Column Release cold water through the valve before oxygen is consumed (anaerobic)
 - Higher oxygen content minimizes the growth of methylating bacteria
 - Higher oxygen content maximizes the growth of de-methylating bacteria

Sediment - maintain stable sulfides & "starve" SRB

Anaerobic (sulfate-reducing) bacteria

Water - maintain aerobic conditions & SRB cannot compete for carbon

Make Blue Large and Green Small Move O/A Boundary to Sediment/Water Interface

Northern pike say that source control + SRB starvation work quite well

Water Column Management: bottom water release

Valve closed: 3,400 mg methyl mercury per year

Valve open: 2,000 mg methyl mercury per year

Yellow perch say that bottom water discharge works quite well

What does Deer Lake tell us that applies elsewhere?

- Flooded soils and wetlands typically generate and export methyl mercury
- Aquatic habitat management can control mercury methylation
 - Microbial habitat (aerobic vs anaerobic)
 - Sulfur cycling (sulfate vs sulfide)
 - Carbon, Nitrogen and Phosphorus loading matter
- If mercury is an issue in sediments and/or fish
 - Recommend a stable water level (run-of-river)
 - Recommend bottom- water discharge
- Reservoirs, if properly managed, are methyl mercury sinks
 - Deer Lake keeps 80% of the mercury from its watershed out of the coastal zone of Lake Superior

What is the sustainability message?

- United Nations Brundtland Commission (June 1987) defined Sustainable Development as
- "...meets the needs of the present without compromising the ability of future generations to meet their own needs"
- Global Reporting Initiative (GRI)
 - International framework for reporting environmental, social and economic performance (triple bottom line)
 - Developed in response to the EXXON Valdez oil spill in 1989 by Ceres, an association for investors
 - Assumes if we manage for sustainable performance, disasters will be avoided
 - United Nations Environment Programme (UNEP) joined forces with Ceres in 1990
 - GRI spun off as an independent organization in 2001
 - Third generation guidelines (g3) released in 2007

The GRI g3 has six indicator protocols

- Economic & Financial
- Environmental
- Social
- Labor Practices & Human Rights
- Communication & Public Relations
- Product Service & Responsibility

Economic & Financial Performance Comparison

- Managed Reservoir
 - \$50,160,000 property value
 - \$37,000 annual fishery value
 - Full-time mining jobs maintained

- Drained & Dredged
 - \$10,505,500 property value
 - \$1,040 annual fishery value
 - Full-time mining jobs lost
 - Part-time construction jobs gained

Deer Lake at normal pool

Deer Lake drawn down

Environmental Performance Comparison

- Managed Reservoir
 - 1,010 acre lake
 - Methyl mercury budget
 - ~9 g input
 - ~2 g in-lake
 - ~2 g to Lake Superior
 - 1,516 acres land protected
 - 34,000 feet shoreline
 - 4.5 river miles
 - 1,645 gallons diesel
 - 10,225 miles driven
 - 16,615 kg CO₂

- Drained & Dredged
 - 90 acre lake
 - Mercury budget (est)
 - ~9 g input
 - ≥2 g in basin
 - ≥ 11 g to Lake Superior
 - No land conservation
 - 4 river miles restored

- 901,204 gallons diesel
- 7,389,144 miles driven
- 9,102,160 kg CO₂

Social Performance Comparison

- Managed Reservoir
 - Human health protected
 - <u><</u>14 miles from population center to excellent walleye fishery
 - Trout stream protected
 - 40 personal vehicle trips of traffic over 30 years

Drained & Dredged

- Human health protected
- 53 miles from population center to excellent walleye fishery
- Trout stream vulnerable
- 29,320 semi-truck trips of traffic over 8 years

Summary

- Reservoirs can be managed to control methyl mercury in fish
 - Microbial communities can be managed by manipulating habitat
 - Nutrients are also important
 - Sediment, wetland and water column habitats need to be considered in a comprehensive plan
- Recommendations for methyl mercury management
 - Stable pool preferred over fluctuating water level
 - Run-of-river hydraulic regimens are preferred
 - Bottom water release is generally preferred
- The GRI g3 is a useful sustainability assessment tool
 - Flexible self-reporting method
 - Gaining acceptance in the private sector, used to communicate p
 - Useful for comparing options and communications

Thank You

