

Engineering With Nature: Designing Navigation Infrastructure for Greater Environmental Sustainability USACE Workshop, Charleston, SC

September 7, 2011

The Manatee Pocket Dredging Project: Environmentally Beneficial, Sustainable, and Cost-Effective

Michael P. Whelan, P.E., D.CE. (1), David L. Stites, Ph.D.(1), Kathy Fitzpatrick, P.E.(2), Larry T. Dale, G.C.(3)

- (1) Senior Engineer, Senior Scientist, (respectively) Taylor Engineering, Inc., 10151 Deerwood Park Boulevard, Suite 300, Building 300, Jacksonville, Fl 32256
- (2) Coastal Engineer, Martin County Engineering, 2401 SE Monterey Road, Stuart, FL 34996
- (3) President, Dickerson Florida, Inc., 3122 N 25th St, Fort Pierce, FL 34946

Project Location

Waterfront

Environmental

Coastal

Hydrology / & Hydraulics

Manatee Pocket Site Constraints

Manatee Pocket

The Pocket, a long, narrow estuarine embayment lined with marinas and homes, contains shoals of sandy and organic sediments affecting navigation and water quality.

Waterfront

Environmenta

Coastal

Hydrology & Hydraulics

Hydrology & Hydraulics

Environmental

The Hydraulic Dredge

Dickerson-Florida's Miss Margaret

Waterfront Coastal GIS Environmental Hydrology & Hydrau

Project Benefits and Challenges

Project Benefits

- A successful environmentally sustainable dredging project,
- Benefits local navigation,
- Creates marine infrastructure, and
- Increases benthic habitat environment in Martin County FL.

Project Challenges

- Hydraulic dredging of potentially contaminated sediments,
- Pumping of the dredge slurry through more than four miles of residential development to a confined disposal facility (CDF) at the end of a local airport runway.
- Required intensive batch testing of each truckload of sediment taken from the CDF to allow determination of appropriate sediment disposal (lined landfill disposal or commercial industrial use).

Waterfront Coastal CIS Environmental Hydrology Hydraulics

Clients and Team's Goals

For Martin County:

- Complete Dredging of Manatee Pocket to permitted depth (FDEP and USACE) including channel creation, development of submerged benthic habitat, and increasing the tidal flow
- Complete as economically as possible
- Complete project in accordance with project schedule

For Dickerson Florida:

- Reduction of high concentrations of contaminants of concern at specific locations and
- Cost-effective alternatives to a very risky dredge material management plan.
- Utilize the design-build concept, with engineers working on the contractor's team.

Hydrology

& Hydraulics

Our Design-Build Concept

Project Team's Approach

Environmental

- Resolve project challenges at the proposal stage and submitted an alternate engineering plan with its bid.
- Team must accept some failure risk at the bid and initial project stages but allowed the team to provide the county with a better project than identified in the bid offering.
- Required the collection of additional field samples to clarify the distribution of the contaminants of concern and use that data to define a dredging plan mixing sediments with high and low contaminant concentrations to achieve industrial/commercial cleanup standards.
- Relocated the CDF to a safer, closer location (the Dickerson team had identified several acceptable locations at the proposal stage).
- Develop a two-cell CDF design
- Reduce the number of booster pumps in the overland conveyance of the dredged sediments from 4 to 1

Hydrology

& Hydraulics

Contaminated Sediments

Channel Segments

Environmenta

Coastal

ydrology Hydraulics

Sediment Soil Analysis

Table D-1: Dredging Volumes per Segment

SEGMENTS	VOLUME (CY)	% FINER THAN 200 SIEVE	SEGMENTS	VOLUME (CY)	% FINER THAN 200 SIEVE
1	22,198	10.9	14	831	20.6
2	15,811	6.8	15	1,413	8.3
3	8,156	36.0	16	27,824	31.5
4	10,765	42.0	17	6,690	19.4
5	11,040	38.0	18	6,453	13.8
6	14,217	14.6	19	5,053	26.6
7	30,269	17.2	20	1,877	16.6
8	20,226	36.3	21	800	18.3
9	12,656	46.5	22	2,306	5.4
10	27,517	31.6	23	2,607	7.8
11	16,298	42.4	24	8,809	9.1
12	16,298	22.2	25	3,522	6.8
13	4,280	12.6	TOTAL	VOLUME	278,276

Waterfront

Coastal

Hydrology/ & Hydraulics

Environmental

Sediment Chemistry

Table D-2: Weighted Average Concentrations

Table D-2: Weighted Average Concentrations									
		Soil Cleanup Target Levels							
	Units	Residential	Commercial/ Industrial	Weighted Total					
Semi-volatile Organic Compounds									
Acenaphthene	mg/kg	2,400	20,000	0.016					
Acenaphthylene	mg/kg	1,800	20,000	0.011					
Anthracene	mg/kg	21,000	300,000	0.020					
Benzo(a)anthracene	mg/kg	#	#	0.019					
Benzo(a)pyrene	mg/kg	0.1	0.7	0.018					
Benzo(b)fluoranthene	mg/kg	#	#	0.021					
Benzo(g,h,i)perylene	mg/kg	2,500	52,000	0.015					
Benzo(k)fluoranthene	mg/kg	#	#	0.014					
Chrysene	mg/kg	#	#	0.019					
Dibenzo(a,h)anthracene	mg/kg	#	#	0.014					
Ideno (1,2,3-c,d)pyrene	mg/kg	3200	59000	0.004					
1-Methylnaphthalene	mg/kg	2,600	33,000	0.006					
2-Methylnaphthalene	mg/kg	#	#	0.014					
Naphthalene	mg/kg	200	1,800	0.013					
Phenanthrene	mg/kg	210	2,100	0.015					
Pyrene	mg/kg	55	300	0.022					
Benzo[a] pyrene Toxicity Equivalent Calculations									
Benzo[a]pyrene TEQs	mg/kg	0.1	0.7	0.021					
Metals									
Aluminum	mg/kg	80,000	NA	7743.54					
Arsenic	mg/kg	2.1	12	3.22					
Cadmium	mg/kg	82	1,700	0.31					
Copper	mg/kg	150	8,900	27.94					
Lead	mg/kg	400	1,400	12.04					
Mercury	mg/kg	3	17	0.12					
Zinc	mg/kg	26,000	630,000	40.51					

Notes: # = Refer to Benzo[a]pyrene TEQ (Total Equivalent Value) for the calculated Benzo(a)pyrene equivalent value and applicable screening criteria.

Permitted Pipeline Routes

PIPELINE ROUTE HAS A TOTAL LENGTH OF APPROXIMATELY 24,850 FT.

TYPICAL PIPELINE INSTALLATIONS ON

- Used Airport Site
- +/- 4 miles of Pipeline through Residential neighborhoods
- Crossings through Residential driveway
- Directional drills under local streets
- Through Gopher tortoise habitat
- Through Golf Course and surrounding Community

Hydrology / & Hydraulics

Environmental

Permitted Staging Areas

Hydrology

Hydraulics

Environmental

Teams solution to the CDF

Hydrology & Hydraulics

ntal

Team's Pipeline Route

Pipeline Routes Using Existing R/O/W

Booster Pump Placed in Industrially Zoned Area

Waterfront

Coastal

ydrology Hydraulics

Proposed Temporary CDF

Temporary CDF Facility

Temporary Weirs

Temporary Seepage Swale

Waterfront

Coastal

Hydrology & Hydraulics

Hydrology & Hydraulics

Temporary CDF in Operation

Project's Final Results

- Risk acceptance and engineering design work in the proposal a winning bid and approved permit modifications.
- All of the dredged sediments met commercial industrial use standards.
- Reduced overland pipeline route to about one mile long, reduced booster pump requirements from four to just one and eliminated costs to put the pipeline under residential driveways and roads.
- Smaller project allowed a shorter dredging period
- Reduced the project carbon footprint
- Increased sediment reuse, and
- Achieved Clients and Team's goals

Hydrology & Hydraulics

Questions?

