Coastal Development in South Africa

Steven Weerts

CSIR

Coastal Systems Research Group, Durban


South Africa

sweerts@csir.co.za

our future through science

Geographic focus

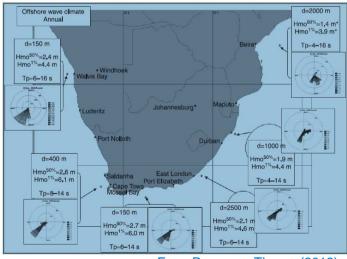
Coastal resilience – An African context

Common threads

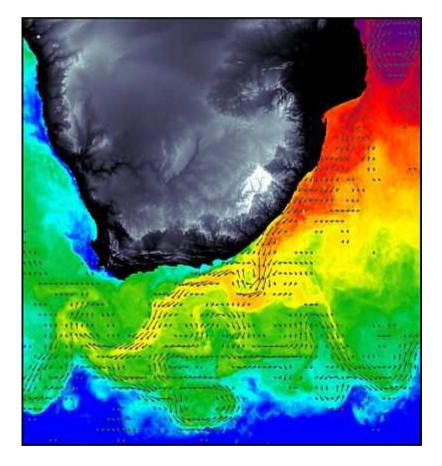
- Coasts provide EGS
- Disproportionate contribution to national economies
- Population densities are concentrated on coasts

More (?) pertinent in Africa

- A strong development imperative
- People strongly and often very directly reliant on provisioning EGS (subsistence)
- People are vulnerable when regulating EGS are impacted

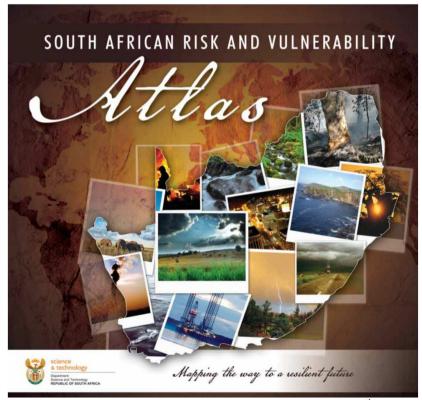

Provisioning	Regulating	Cultural
 Food: fish Timber and fuel Building materials Minerals Curios Fibre Medicines 	 Atmosphere and climate regulating Hydrological balance Disease control Waste assimilation Erosion control Storm and flood protection 	 Recreational Spiritual and religion Aesthetic Inspirational Educational Heritage
 Nutrient Primary (ing of habitat ng life cycles

From Goble et al. (2014)



Current coastal conditions

- Strong oceanic forcings
- Role of winds in upwellings
- Tides < 2 m
- Wave dominated
- Sediment transport by long shore drift

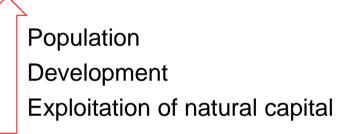

From Rossouw, Theron (2012)

Future climate

South African Risk and Vulnerability Atlas:

• "downscaled climate change scenarios to support strategy development in the areas of risk and vulnerability"

www.rvatlas.org


Future coastal conditions

Predicted changes in:

- Sea level
- Ocean currents
- Water temperature
- Increased storminess
- Wind and waves
- Sediment transport rate

Has implications for:

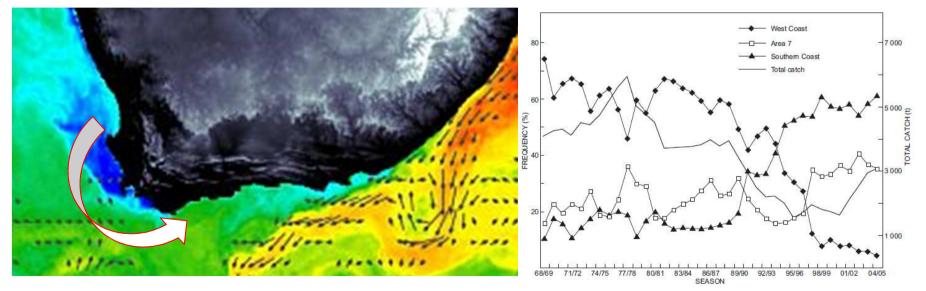
- The way we use the coast
- The benefits we derive from it
- Our development plans

Not just Climate Change

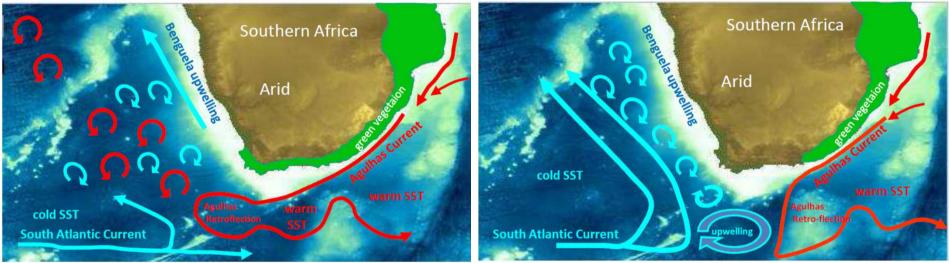
Fisheries

- Shipping
- Coastal development

Fish stocks moving


Since ~ 1990's:

- Pilchard
- Anchovy
- West Coast Rock Lobster



Photos: SA Dept. of Env. Affairs: Marine and Coastal Management

From Cockroft et al. (2008)

Fish stocks moving

www.rvatlas.org

Downstream mode of Agulhas Retroflection

Upstream mode of Agulhas Retroflection

Fish stocks moving

Implications for:

- Catches (decreasing/increasing)
- Infrastructure
 - Fish processing plants
 - Supporting industries
- Permit allocations
- West coast fishing communities
 - Deep rooted culture

Shipping and maritime operations Rossouw M & Theron A (2012)

Main ports around southern Africa

Source: National Port Authority.

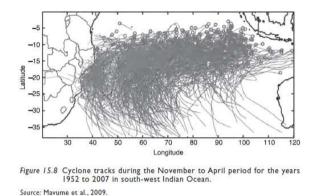
Shipping and maritime operations Rossouw M & Theron A (2012).

Wind and waves:

- 10% increase in wind speed = 26% increase in wave height
- 10% increase in wind speed = 80% increase in wave power

Waves and current:

• Increase in Agulhas current strength = increase probability of 'rogue' waves

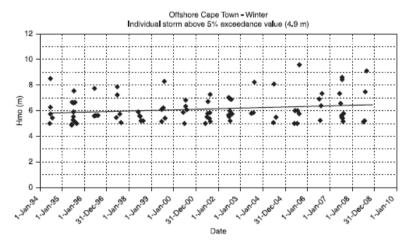


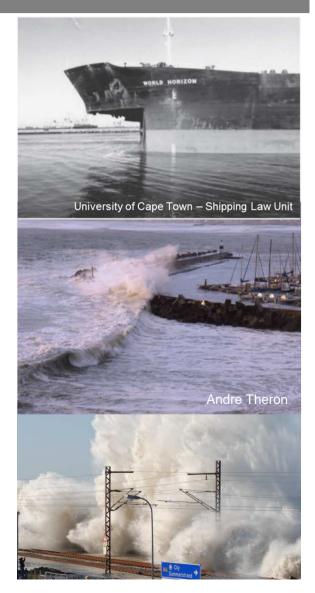
Shipping and maritime operations Rossouw M & Theron A (2012)

Storm events:

- Cold fronts
- Cut-off lows
- Tropical cyclones

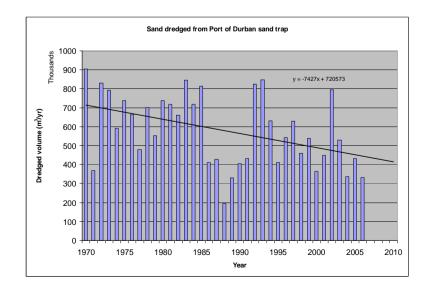
- Wave data indicate increasing wave height in winter storms (0.5 m over last 14 years?)
- Storm intensity is increasing




Figure 15.5 Peaks of individual storms over 14-year period – offshore Cape Town.

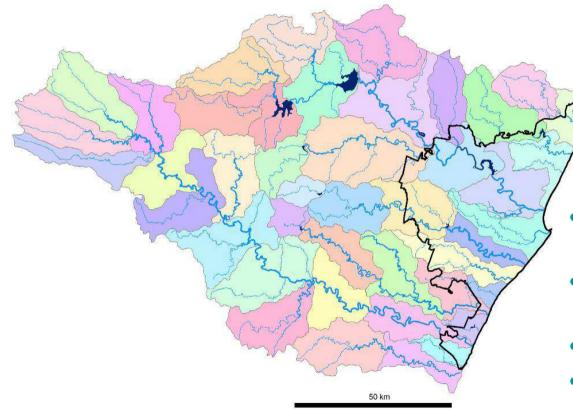
Source: Based on recordings by CSIR from 1994 to 2009.

Shipping and maritime operations Rossouw M & Theron A (2012)


Vulnerability to marine weather conditions:

- Shipping
 - Predominantly (but not only) smaller vessels vulnerable
- Port operations and transport infrastructure
 - Increased frequency and duration of port "closure"
 - Wave height, SLR and aging infrastructure (e.g. Maputo, Beira)
 - Finger jetties and transhipment operations (Mozambique)
- Impact of port development and operations on the coastline
 - Sediment dynamics and coastal erosion

Coastal erosion (eThekwini municipality)


- Many environmental constraints to port operation and development
- Disruptions to sediment movement is a major one
- Sediment by-pass systems needed to maintain entrance canal
- Not particularly successful

Sediment budgets on the eThekwini coastline

Andre Theron, CSIR

- Soil erosion models and input data, e.g. landcover, slopes, erodibilty...
- 19 rivers sediment yield modelling
- Field measurements in 4 rivers
- Verification of sediment yields

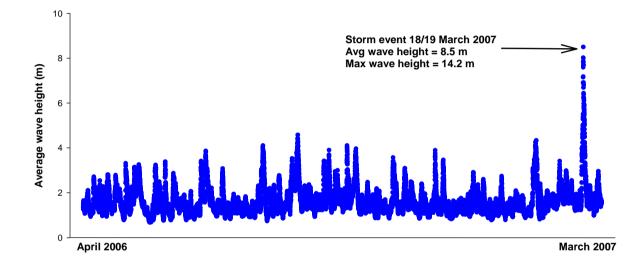
Sedimentary Inputs From Fluvial Sources Andre Theron

eThekwini Municipality

Dams:

- 12 large dams with high sand trapping efficiencies high
- Reduce sand yield to coast by ~ 1/3

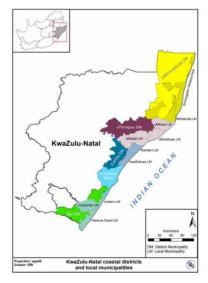
Sand mining:

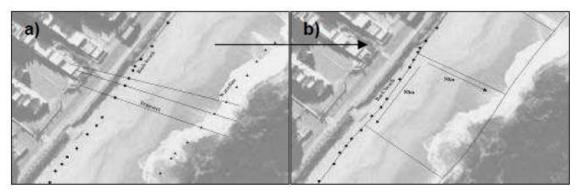

- 31 operations on 18 rivers
- Reduce sand yield to coast by ~ 1/3

Combined impacts:

- Remaining sand yield to coast only 140000 - 240000 m³/yr
- ~ 1/3 "natural" budget

A coastal storm – March 2007





Coastal Vulnerability Index Palmer et al. (2011)

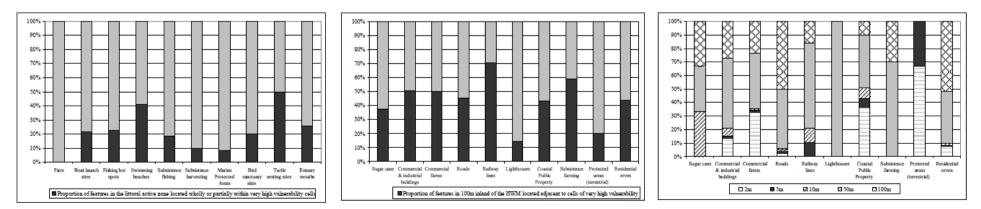
A relative index of vulnerability (KwaZulu-Natal coast) based on:

- Beach width The wider the beach the more wave energy dissipates
- Dune width Dune width gives an indication as to the sediment available which will buffer against erosion
- Distance to the 20m isobath The greater the offshore distance to the 20m isobath the greater the dissipation of wave energy
- Percentage rocky outcrop The higher the percentage the lower the erosion rate
- Width of vegetation behind the back beach The more the vegetation, the greater the buffer against erosion

Coastal Vulnerability Index Palmer et al. (2011)

Table 1: Rating of physical parameters

Physical	Extremely	Low (2)	Moderate (3)	High (4)
Parameter	Low(1)			
Beach width	>150m	100 – 150m	50 – 100m	< 50m
Dune width	>150m	50 – 150m	25 – 50m	< 25m
Distance to 20m isobath	>4km	2 – 4km	1 – 2km	<1km
Distance of vegetation behind the back beach	> 600m	200 – 600m	100 – 200m	<100m
Percentage outcrop	> 50%	20 – 50%	10 - 20%	< 10%


Relative CVI = a + b + c + d + e + f + g

Where a = beach width vulnerability score, b = dune width vulnerability score, c = distance to 20m isobath vulnerability score, d = percentage outcrop vulnerability score, e = distance of vegetation behind the back beach vulnerability score, f = additional weighting of highly vulnerable sites (if a, b and c = 4), g = additional weighting if the cell intersects an estuarine area.

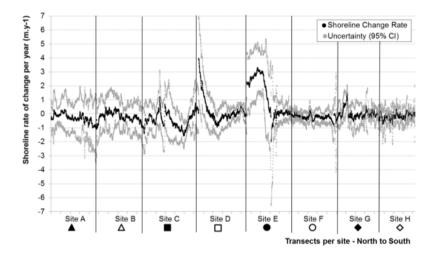
Coastal Vulnerability Index Palmer et al. (2011)

Table 2: The grouping at which social,	economic and eco	ological assets were assessed
		O

Economic & commercial activities	Strategic infrastructure	Recreational areas	Subsistence sites	Ecological important areas	Residential properties
Dune mining	Piers [#]	Boat launch sites [#]	Subsistence fishing sites [#]	Marine Protected Areas [#]	Residential erven
Forest plantation	Roads	Fishing hot spots#	Subsistence harvesting sites [#]	Bird sanctuary sites"	
Sugar cane	Railway lines	Swimming beaches#	Subsistence farming areas	Turtle nesting sites#	
Commercial & industrial buildings	Lighthouses	Sports facilities		Estuary mouths [#]	
Commercial farms		Coastal Public Property ⁴		Protected areas (terrestrial)	

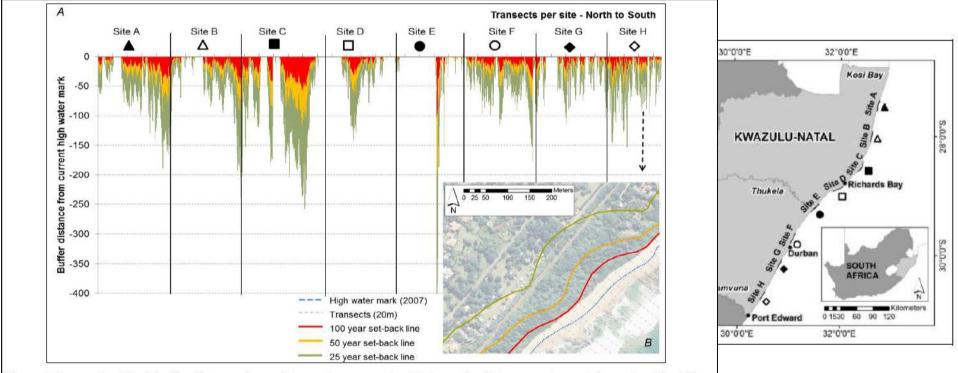
located wholly or partially within very high vulnerability cells

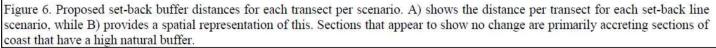
HWM and located adjacent to cells of very high CVI


Figure 4: Proportion of features in the littoral active zone Figure 5: Proportion of features within 100m inland of the Figure 6: Features within varying distances of the HWM of very high CVI cells

Risk set-back lines Goble & MacKay (2013)

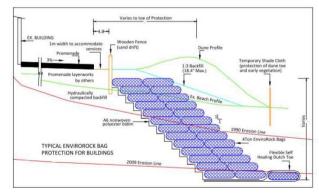
Set-back lines ~ "seawards of which development can be prohibited or controlled" (Integrated Coastal Management Act)


Input factors


- Long-term shoreline change
 - Aerial photography
 - 1937 2007
 - -1.97 m/yr to +3.96 m/yr

- Sea level rise
 - 3.55 mm/yr (Mather et al. 2009)
- CVI

Risk set-back lines Goble & MacKay (2013)



Soft engineering on Durban's Central Beachfront

Breetzke & Mather (2013)

Post the March 2007 storm event:

- Geotextile bags used to facilitate the development of vegetated dunes along most of Durban's beachfront as part of a development project
- Learning-by-doing and adaptive management adopted
- Smart and ecologically sound:
 - reduces strain on city maintenance requirements and service delivery needs
 - reduces risk to infrastructure by creating a sustainable buffer against dynamic coastal processes
 - an innovative and proactive response to disaster management requirements
 - can be considered to be a financially and environmentally sustainable investment
 - created both short term and long employment
 - proactively addresses waste, security and crime issues
 - beautifies the city landscape / coastal zone
 - improves public amenity and access to the coastal zone
 - adopts an innovative and best practice

Soft engineering on Durban's Central Beachfront

Acknowledgments

- Andre Theron (CSIR)
- Lara van Niekerk (CSIR)
- Bronwyn Goble (Oceanographic Research Institute)
- Fiona MacKay (Oceanographic Research Institute)

References

- Allan DG, Sinclair JC and Rossouw J (1999). The waterbirds of Durban Bay: current status and historical trends. Durban Museum Novitates 24: 1–21.
- Breetzke T & Mather A (2013). Defending Durban's beaches a recipe for success? Planning for a Changing Environment. 18th Annual Conference of the International Association for Impacts Assessment. Thaba 'Nchu, South Africa. 16-18 September 2013.
- Cockcroft AC, van Zyl D & Hutchings L (2008). Large-scale changes in the spatial distribution of South African West Coast rock lobsters: an overview. African Journal of Marine Science 30: 149-159.
- Goble BJ & Mackay CF (2013). Developing risk set-back lines for coastal protection using shoreline change and climate variability factors. Proceedings 12th International Coastal Symposium (Plymouth, England). Journal of Coastal Research, Special Issue No. 65: 2125-2130.
- Goble BJ, van der Elst RP & Oellermann LK (eds) (2014). Ugu Lwethu Our Coast. A profile of coastal KwaZulu-Natal. KwaZulu-Natal Department of Agriculture and Environmental Affairs and the Oceanographic Research Institute, Cedara, 202pp.
- James NC, Van Niekerk L, Whitfield AK, Potts WM, Götz A & Paterson AW (2013). Effects of climate change on South African estuaries and associated fish species. Climate Research 57: 233–248.
- Mather AA, Garland GG & Stretch DD (2009). Southern Africa sea levels: corrections, influences and trends. African Journal of Marine Science 31: 145-156.
- Palmer BJ, Van der Elst R, Mackay F, Mather AA, Smith AM, Bundy SC, Thackeray Z, Leuci R & Parak O (2011). Preliminary coastal vulnerability assessment for KwaZulu-Natal, South Africa. Journal of Coastal Research 64: 1390-1395.
- Rossouw M & Theron A (2012). Investigation of potential climate change impacts on ports and maritime operations around the southern African coast. In Maritime Transport and the Climate Change Challenge, Asariotis R & Benamara H (eds). Earthscan, Oxon.
- Van Niekerk L, Engelbrecht F, James J, Lamberth SJ, Meyer A & Theron A (in prep.) How vulnerable are South Africa's estuaries to climate change?