Quantifying the Behavior of Engineered–Natural Systems for CO₂ Storage

George Guthrie Office of Research and Development National Energy Technology Laboratory U.S. DOE Office of Fossil Energy May 2014

Quantifying the Behavior of Engineered–Natural Systems for CO₂ Storage

Using science-based prediction to inform decisions tied to a complex and uncertain engineered-natural system.

Quantifying the Behavior of Engineered–Natural Systems for CO₂ Storage

Using science-based prediction to inform decisions tied to a complex and uncertain engineered-natural system.

Permeability varies over space and time.

Seismic image through SACROC reservoir.

SACROC core data represent ~10–¹⁰ of the total reservoir volume.

Seismic data do not provide high resolution information on permeability.

In conventional oil production, permeability fields are refined by history-matching to data from 10's to 1000's of wells.

Different choices of permeability (& porosity, ...) impact predictions on reservoir behavior.

NRAP leverages DOE's competency in science-based prediction for engineerednatural systems to build confidence in the business case for CO₂ storage.

Building toolsets and the calibration & validation data to quantify ...

- Potential impacts related to release of CO₂ or brine from the storage reservoir
 - Potential ground-motion impacts due to injection of CO2

Technical Team Leads

NRAP Technical Lead

- George Guthrie
- **NETL Team Lead** •
 - Grant Bromhal
- **Reservoir Lead** •
 - Grant Bromhal
- Wellbore Lead
 - George Guthrie

- LANL Team Lead
 - Rajesh Pawar
- System-Modeling Lead Monitoring Lead •
 - Rajesh Pawar

- LBNL Team Lead •
 - Jens Birkholzer
- - Tom Daley

- LLNL Team Lead
 - Susan Carroll
- Induced-Seismicity Lead • - Josh White

- PNNL Team Lead
 - Chris Brown
 - Groundwater Lead
 - Diana Bacon

Science-based prediction can build confidence in expected storage security by quantifying system performance for a range of conditions.

NRAP Goal—to predict storage-site behavior from reservoir to receptor and from injection through longterm storage...

> ... in order to quantify key storage-security relationships for various site characteristics.

Confidence in uncertain predictions can be built through comprehensive, multi-organizational team assessments.

NRAP is building and applying computationally efficient tools to probe site behavior stochastically, thereby accounting for uncertainties and variability in storage-site characteristics.

A. Divide system into discrete components

System behavior stems from the behavior of individual components.

B. Develop detailed component models that are validated against lab/field data

Science-based prediction can be used to characterize component behavior for specific conditions.

- physics based
- detailed behavior for specific conditions

- simplified; rapid
- stochastic behavior for range of conditions

Reduced-order models (ROMs) are used to allow rapid evaluation of component behavior over conditions of interest.

C. Develop reduced-order models (ROMs) that rapidly reproduce component model predictions

- 4D (3D+time) to 3D
- Only key variables
- Finite-element to simplified solution

ROM focuses on P and saturation at reservoir-seal interface.

Sensitivity analysis allows ROM to focus only on key variables.

Los Alamos

Pacific Northwest (14)

NRAP is evaluating a range of approaches to Reduced-Order Models (a.k.a., Rapid-Performance Models).

	Layered-clastic Reservoir	Carbonate-reef Reservoir	Clastic, Complex Reservoir	Open & Cemented Wellbores	Fractured Seal	Carbonate Aquifer	Clastic Aquifer
Lookup Table				Х	X		
Response Surface (via PSUADE)	X					X	X
Analytical Model				X	X	X	X
Polynomial Chaos Expansion		x					
Gaussian Regression	X						
Surrogate Reservoir Model (base on A.I. methods)		х	х				

- Potential Receptors or Impacted Media Release and Transport
 - D. Link ROMs via integrated assessment models (IAMs) to predict system performance & risk

NRAP is focused on quantification of two types of IAMs, based on coupling reservoir behavior to other system components.

Potential Leakage Impacts (Atmosphere; Groundwater) Potential Ground-Motion Impacts (Ground Acceleration)

Slip along a Fault Plane

fluid propagation

fluid propagation

Reservoir (plume/pressure evolution)

Release/Transport of Fluids

stress/pressure propagation

Reservoir (plume/pressure evolution)

Key NRAP Accomplishments: Building the Toolsets

- Developed first-of-a-kind toolsets for science-based, quantitative evaluation of risks and uncertainties
 - Leakage risks (reservoirs to receptors)
 - Induced seismic events
- Generated first quantitative risk profiles for long-term behavior
- Evaluated numerous approaches to reducedorder models (lookup table to artificial intelligence)
 - Detailed sensitivity analyses to identify key variables
 - Achieve balance between fidelity and speed
 - Developed ROMs for:
 - ✓ Reservoir (pressure & CO₂ response)
 - ✓Leakage from wells
 - Leakage through fractures in seals
 - \checkmark Groundwater impacts (CO₂ & brine influx)

Key NRAP Accomplishments: Building the Science Base

- Developed underpinning, physics-based models for wellbores and fractures
- Demonstrated validity and limitations of de-coupling assumption in integrated assessment models
- Established "no-impact" threshold values for two different classes of aquifers representing ~60% of U.S. area
- Expanded science base and data needed for model calibration
 - Lab studies on cement, shale, aquifers
 - · Geostatistical studies on wellbore characteristics

(20)

Key NRAP Accomplishments: Applying the Toolsets

- Generated first quantitative risk profiles for long-term behavior
- Demonstrated use of IAMs to quantitatively identify key subsurface parameters that impact risk at a site
- Developed a preliminary technique for risk-based monitoring network design of CO₂ storage sites

Leaky Storage Cases

Pacific Northwest

BLOSOM takes oil-release input and predicts fate.

CRUDE OIL, GAS, & HYDRATES MODELS

Chemical and physical properties for crude oil, gases, and hydrates

MULTI-PHASE JET/PLUME MODEL

Near-field buoyant jet/plume from blowout

FATE & TRANSPORT MODEL

Transport of oil in far-field until degraded, beached, or settled on sea-floor

OIL WEATHERING MODEL

Degradation and changes in physical properties of crude

HYDRODYNAMIC HANDLER

Ambient currents and water properties

BLOSOM takes oil-release input and predicts fate.

BLOSOM takes oil-release input and predicts fate.

CRUDE OIL, GAS, & HYDRATES MODELS

Chemical and physical properties for crude oil, gases, and hydrates

MULTI-PHASE JET/PLUME MODEL

Near-field buoyant jet/plume from blowout

FATE & TRANSPORT MODEL

Transport of oil in far-field until degraded, beached, or settled on sea-floor

OIL WEATHERING MODEL

Degradation and changes in physical properties of crude

HYDRODYNAMIC HANDLER

Ambient currents and water properties

Quantifying the Behavior of Engineered–Natural Systems for CO₂ Storage

Using science-based prediction to inform decisions tied to a complex and uncertain engineered-natural system.

