Coastal Resilience: The Environment, Infrastructure, and Human Systems

USACE Flood Risk Management and Sustainable Coastal Infrastructure

Joseph Z. Gailani, PhD Research Hydraulic Engineer

US Army Engineer R&D Center Coastal and Hydraulics Laboratory May 20, 2014

US Army Corps of Engineers _®

National Water Resource Challenges

Wine

BUILDING STRONG®

Declining **Biodiversity**

2

Disaster Preparedness and Response

Value to the Nation USACE Flood Risk Management

Operates 600+ dams, 383 major lakes and reservoirs

- 376M visitors/yr, \$15B in economic activity, 500,000 jobs
- 24% US hydropower capacity, 3% of US electricity, \$500M in sales

25,000+ km of levees (some coastal)

100 coastal storm damage reduction and related projects including 650 km of shore protection

Destination for 75% of US vacations

~12 Emergency responses per year

- Electricity, debris removal, water/ice
 - distribution, temporary roofing, flood fight,...

National Challenge: Aging Water Infrastructure

- Many infrastructure projects 50+ years old
- Investments in water resources infrastructure declining in real terms
- Result: more frequent closures for repairs, decreased performance & costly delays

Innovative solutions for a safer, better world

BUILDING STRONG®

National Challenge: Environmental Sustainability

BUILDING STRONG®

- Balance between economic development, environmental stewardship
- Water quality threatened on 8% of nation's rivers and streams
- Corps has authority and programs for ecosystem restoration.

National Challenge: Integrated Water Resources Management

- Planning based on watershed / regional approach
- Ecosystem restoration
- Environmental sustainability
- Interagency coordination
- Involve all stakeholders

BUILDING STRONG®

Innovative solutions for a safer, better world

ERDC

USACE Flood & Coastal Systems: Strategic R&D Themes

- Determine Risk & Uncertainty for Project Alternatives Evaluation & Performance
- Optimize Management of Coastal & Estuarine Resources
- Assess Comprehensive & Multidisciplinary Management of Watersheds
- Improve Flood Risk Management & Water Control Infrastructure Resiliency & Reliability
- Enable effective disaster preparation, response & recovery
- Engineering with nature to enhance ecosystem and processes, benefits and services

BUILDING STRONG®

Research and Development: Wave Dissipation by Vegetation

- Guidance to describe wave dissipation by natural features
- Complement traditional coastal protection
- Maximize ecological benefits and services

Approach

- Literature Review
- Laboratory Investigations
 - Tests with real vegetation
 - Documentation of tests and results
- Numerical Wave Flume (NWF)

- Phase-Averaged Numerical Model
 - Development of improved dissipation function for phase-averaged models
 - Evaluation of dissipation function in existing phase-averaged wave model and documentation (2014)

ERDC

Flume/Instrumentation

- 13 single-wire capacitance wave gauges
 - ► sampling rate: 25 Hz
- 4 ADVs paired with wave gauges
 - ► sampling rate: 25 Hz
- 1 high-resolution ADCP
 - ► sampling rate: 4 Hz

waves generated for 8 minutes

BUILDING STRONG®

Trends in Wave Attenuation

- Wave attenuation was found to:
 - increase with stem density
 - increase with submergence ratio
 - slight increase with incident wave height
 - marginal decrease with longer waves during emergent conditions with no discernible trend at I_s/h = 0.78
- described wave decay very well (lowest R² = 0.82)

ERDC

Equilibrium Range

- dissipation of higher frequencies also dependent on stem density and submergence ratio
- suggests current parameterizations not valid for spectra propagating through emergent canopies

BUILDING STRONG_®

Immersed Boundary Approach

- A numerical approach for representing thin structures
- Behaves well when structures touch and when their deformation can be described with simple models (e.g. beam theory)
- Gives up the ability to represent the geometry of the structure precisely

Ongoing Research

BUILDING STRONG_®

Coastal Storm Modeling System (CSTORM-MS)

Innovative solutions for a safer, better world

BUILDING STRONG_®

Thank You

Reference: Anderson, M.E. And J.M. Smith. 2014. Wave attenuation by flexible, idealized salt marsh vegetation. Coastal Engineering 83, 82-92

Innovative solutions for a safer, better world

BUILDING STRONG®