Strategic Placement – an EWN/RSM Solution to Dredged Material Management

EWN/RSM IPR, Vicksburg, MS 22 July 2014

Joseph Z. Gailani Cheryl E. Pollock

Definitions

- EWN: The intentional alignment of natural and engineering processes to efficiently and sustainably deliver economic, environmental and social benefits through collaborative processes
- RSM: Managing sediment within a watershed to benefit a region; potentially saving money, allowing use of natural processes to solve engineering problems, and improving the environment.
- Strategic Placement: DM placement in a manner and at locations that permits natural forces to disperse the DM toward other locations where it can deliver benefits
 - Maximize benefits (FRM, Environmental, etc)
 - Minimize rehandling
 - Minimize negative environmental impacts
 - Reduced cost (vs. direct placement)
 - Increase beneficial use applications

Objective

- Optimally, strategic placement is a sustainable solution to DM management
 - ► Sufficiently dispersive placement site
 - Receptors that require a continuing supply of sediment
 - ▶ Within budget constraints
- Strategic placement (vs. direct placement) provides opportunity to control dosing and sediment types
- Use engineering tools to support EWN/RSM
 solution development

Objective

- Build appropriate tools to support application of strategic placement in diverse environments
 - ▶ Demonstration Projects
 - ▶ Process Understanding
 - Dredged material placement
 - Nearshore/shallow water transport
 - Sediment interaction with shallow water features/habitat
 - ► Predictive Tools and Models
 - ▶ Decision Support
 - Environmental Impacts
 - Cost/Benefit

Example EWN Solution for DMM

Example EWN Solution to DMM

- Place mixed sediment from channel into nearshore berms
- Allow natural winnowing to remove fine content
- Minimize rehandling
- Maximize sand to beach
- Longshore transport patterns will move sediment into north Tybee littoral zone

Example EWN Solution for DMM

Mobile Bay Dredging Practices

- Present dredging practice: remove sediment from bay to ODMDS
- This eliminates sediment from sediment-starved regional system (the Bay)
- Proposed practice: TLP within Mobile Bay to feed resources
- Issues: environmental impacts, rehandling, cost

LTFATE Modeling Framework

TLP Summary of Findings

Scenario Number	1	2	3	4
	TLP	Sensitivity Sim. 1	Sensitivity Sim. 2	Base Case (No-action)
Typical month	57%	104%	73%	100%
Active month	55%	105%	73%	100%
Hurricane Gustav	52%	103%	68%	100%
Hurricane Ida	53%	104%	70%	100%

- Approximately 35% of the sediment that erodes from the designated disposal areas is transported and deposits in the navigation channel.
- The remaining 65% is widely dispersed throughout the bay by wind-, river-, and tide-driven currents.
- Sediment transport to habitat is still being evaluated
- Alternative in-Bay placement locations are being evaluated

Strategic **Placement** Dredged Material In Nearshore Berms

BUILDING STRONG®

Nearshore Berms What are they?

Sediment placed in nearshore, usually- long, linear, shore-parallel, mound-shaped geomorphic features that resemble naturally formed sand bars:

- Stable or inactive berms sediment is stationary
- Feeder or active berms sediments dispersed by waves and currents
- Berms can exhibit both feeder and stable characteristics

Provide sand source to littoral system

- Selectively sort sediment (fines offshore; sand onshore)
- Recreational feature
- Habitat development
- Storage area for future use
- Elevate seabed as foundation for future placements

Downdrift of Ft. Myers Inlet, FL POC: Jim Lagrone, SAJ Photo Courtesy Dr. Ping Wang, USF

Nearshore Berms

Why?

- Active Littoral Nearshore Placements (designed to migrate/disperse)
- Ideally sited near a navigation project, (short haul and down drift beaches eroding)
- Alternative for placement of O&M sediment in nearshore instead of on beach or in deep water
- Beneficial placement of mixed sediment (silt, sand) unsuitable for beach placement
- Less Sediment Restrictions than beach fill (FL: sand with >10% fines cannot be placed on beach)
- Active Nearshore berms sites have renewable capacities
- Offshore disposal and Confined Disposal Facilities (CDFs) remove sediment from regional littoral system
 - Capacities are not renewable
 - Sediments are not ideal for reuse
 - CDFs are 4x cost of nearshore placement
 - Great Lakes CDFs at 80% capacity
- Goals:
 - Reduce O&M cost
 - · Site authorization, reduced haul distance, reduced re-handling
 - Nourish adjacent beaches
 - Selectively transport fines offshore and sand onshore
 - Efficiently and beneficially utilize greater volumes of DM

Downdrift of Ft. Myers Inlet, FL POC: Jim Lagrone, SAJ Photo Courtesy Dr. Ping Wang USF Nearshore Berms in USACE

Berms State of Understanding

Present design guidance is based on design goals:

- Stable: stationary
- Active, Feeder, or Dispersive: feeding the beach or dispersing with time

Berms

State of Understanding (Hands and Allison 1991)

Highly Dispersive Berm Sites

Perdido Key Swash Zone

- Pumped and Pushed
- Winnowing, sediment grades coarser downdrift
- Profile nourished
- Down-drift beaches profile evolution

Ft Meyers NB, Shallow Placement

asymmetric movement
Winnowing, sorting,
dispersing
Fines offshore

movement

Grain size distribution on berm and landward winnowed toward matching the native material

Unique Monitoring

New Smyrna, RIOS Monitoring

RADAR INLET OBSERVING SYSTEM:

Remotely acquired waves, currents, and bathymetry

- No measurable wave effects at berm
- Berm was dispersive over nearshore area

CESAJ- ERDC

http://www.offshoreswell.com

Egmont Key, dredging and nearshore placement

- Mass balance of sediments
- Ship to Shore sediment changes
- Plumb tracking (dredging & disposal)
- Turbidity compared to Light Attenuation
- Bathymetry, material migration

Research Activities

TR: Dredge
Monitoring and
Plume Tracking Mass
Balance

POC: Coraggio Maglio

CHETN: Nearshore
Berm Working
Meeting Summary
POC: Cheryl Pollock

Nearshore Berms
Movement - 2 Journal
Papers Coauthored

POC: Tanya Beck

Research Activities

Snap shot taken every 10 sec. How long will the plume linger? What are impacts to resources?

Photosynthetically Active Radiation (PAR)

POC: Cheryl Pollock/ Deborah Shafer

Cross Shore Swash
Zone Placement
(CSSZ)

POC: Coraggio Maglio

Depth of Closure Maps West Coast Lit Review JP Drafted

POC: Jay Rosati/ Cheryl Pollock

Research Activities

Ship to Shore
Sediment Coarsening
POC: Coraggio Maglio/Jase Ousely

- •Although berm material was transported downdrift:
 - · Sand stayed in the surf zone
 - Sand accumulation was observed on the beach and shoreline due to the presence of the nearshore placed material

Berm Physical Modeling
POC: Ernie Smith

Large Scale Physical Modeling Duck, NC

Working Meeting Out-takes

Identify Challenges

- 1. Material Mobility- Will material move?
- 2. Material Migration- Fate of fines?
- 3. Time scales applied to material movement Short-term, Long-term
- 4. Benefits and Impacts to Resources
- 5. Risk and Re/De-regulation
- 6. Transport Zone, Standardized vocabulary and definition
- 7. Communication with stakeholders

Road Show (Support Districts):

- o Template for Placement Site Trade-offs
- Standardize criteria and communication tools
- Educate on physical processes of sediment-wave interaction
- Explain potential berm benefits
- Address environmental issues
- Demonstrate analysis and evaluation tools
- o Provide overview of regulations and laws
- Demo case studies, their successes and lessons learned

Newly Suggested Method for Reporting the Fate of Sediment and the Rate of Fate of Sediment Movement for Nearshore Berm						
	1-3 years	4-10 years	Stable	Reporting Standard		
Sediment added to transport zone	50%	30%	20%	50/30/20 berm or 80% Feeder berm		
Sediment added to beach	10%	10%		20% beach feeder berm		

Questions?

